1,184 research outputs found

    The datafication revolution in criminal justice: An empirical exploration of frames portraying data-driven technologies for crime prevention and control

    Get PDF
    The proliferation of big data analytics in criminal justice suggests that there are positive frames and imaginaries legitimising them and depicting them as the panacea for efficient crime control. Criminological and criminal justice scholarship has paid insufficient attention to these frames and their accompanying narratives. To address the gap created by the lack of theoretical and empirical insight in this area, this article draws on a study that systematically reviewed and compared multidisciplinary academic abstracts on the data-driven tools now shaping decision-making across several justice systems. Using insights distilled from the study, the article proposes three frames (optimistic, neutral, oppositional) for understanding how the technologies are portrayed. Inherent in the frames are a set of narratives emphasising their ostensible status as vital crime control mechanisms. These narratives obfuscate the harms of data-driven technologies and evince idealistic imaginaries of their capabilities. The narratives are bolstered by unequal structural arrangements, specifically the unevenly distributed digital capital with which some are empowered to participate in technology development for criminal justice application and other forms of penal governance. In unravelling these issues, the article advances current understanding of the dynamics that sustain the depiction of data-driven technologies as prime crime prevention and law enforcement tools

    To App or Not to App? Understanding public resistance to COVID-19 digital contact tracing and its criminological relevance

    Get PDF
    In the context of the COVID-19 pandemic, digital contact tracing has been developed and promoted in many countries as a valuable tool to help the fight against the virus, allowing health authorities to react quickly and limit contagion. Very often, however, these tracing apps have faced public resistance, making their use relatively sparse and ineffective. Our study relies on an interdisciplinary approach that brings together criminological and computational expertise to consider the key social dynamics underlying people’s resistance to using the NHS contact-tracing app in England and Wales. The present study analyses a large Twitter dataset to investigate interactions between relevant user accounts and identify the main narrative frames (lack of trust and negative liberties) and mechanisms (polluted information, conspiratorial thinking and reactance) to explain resistance towards use of the NHS contact-tracing app. Our study builds on concepts of User eXperience (UX) and algorithm aversion and demonstrates the relevance of these elements to the key criminological problem of resistance to official technologies

    High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: Insights on the size and porosity control mechanisms

    Get PDF
    Mesoporous silica nanostructures (MSNs) attract high interest due to their unique and tunable physical chemical features, including high specific surface area and large pore volume, that hold a great potential in a variety of fields, i.e., adsorption, catalysis, and biomedicine. An essential feature for biomedical application of MSNs is limiting MSN size in the sub-micrometer regime to control uptake and cell viability. However, careful size tuning in such a regime remains still chal-lenging. We aim to tackling this issue by developing two synthetic procedures for MSN size mod-ulation, performed in homogenous aqueous/ethanol solution or two-phase aqueous/ethyl acetate system. Both approaches make use of tetraethyl orthosilicate as precursor, in the presence of cetyltri-methylammonium bromide, as structure-directing agent, and NaOH, as base-catalyst. NaOH catalyzed syntheses usually require high temperature (>80 °C) and large reaction medium volume to trigger MSN formation and limit aggregation. Here, a successful modulation of MSNs size from 40 up to 150 nm is demonstrated to be achieved by purposely balancing synthesis conditions, being able, in addition, to keep reaction temperature not higher than 50 °C (30 °C and 50 °C, respectively) and reaction mixture volume low. Through a comprehensive and in-depth systematic morphologi-cal and structural investigation, the mechanism and kinetics that sustain the control of MSNs size in such low dimensional regime are defined, highlighting that modulation of size and pores of the structures are mainly mediated by base concentration, reaction time and temperature and ageing, for the homogenous phase approach, and by temperature for the two-phase synthesis. Finally, an in vitro study is performed on bEnd.3 cells to investigate on the cytotoxicity of the MNSs

    Cd19 cell count at baseline predicts b cell repopulation at 6 and 12 months in multiple sclerosis patients treated with ocrelizumab

    Get PDF
    Background: The kinetics of B cell repopulation in MS patients treated with Ocrelizumab is highly variable, suggesting that a fixed dosage and time scheduling might be not optimal. We aimed to investigate whether B cell repopulation kinetics influences clinical and radiological outcomes and whether circulating immune asset at baseline affects B cell repopulation kinetics. Methods: 218 MS patients treated with Ocrelizumab were included. Every six months we collected data on clinical and magnetic resonance imaging (MRI) activity and lymphocyte subsets at baseline. According to B cell counts at six and twelve months, we identified two groups of patients, those with fast repopulation rate (FR) and those with slow repopulation rate (SR). Results: A significant reduction in clinical and radiological activity was found. One hundred fifty-five patients had complete data and received at least three treatment cycles (twelve-month follow-up). After six months, the FR patients were 41/155 (26.45%) and 10/41 (29.27%) remained non-depleted after twelve months. FR patients showed a significantly higher percentage of active MRI scan at twelve months (17.39% vs. 2.53%; p = 0,008). Furthermore, FR patients had a higher baseline B cell count compared to patients with an SR (p = 0.02 and p = 0.002, at the six-and twelve-month follow-ups, respectively). Conclusion: A considerable proportion of MS patients did not achieve a complete CD19 cell depletion and these patients had a higher baseline CD19 cell count. These findings, together with the higher MRI activity found in FR patients, suggest that the Ocrelizumab dosage could be tailored depending on CD19 cell counts at baseline in order to achieve complete disease control in all patients

    Disability assessment using Google Maps

    Get PDF
    Objectives: To evaluate the concordance between Google Maps® application (GM®) and clinical practice measurements of ambulatory function (e.g., Ambulation Score (AS) and respective Expanded Disability Status Scale (EDSS)) in people with multiple sclerosis (pwMS). Materials and methods: This is a cross-sectional multicenter study. AS and EDSS were calculated using GM® and routine clinical methods; the correspondence between the two methods was assessed. A multinomial logistic model is investigated which demographic (age, sex) and clinical features (e.g., disease subtype, fatigue, depression) might have influenced discrepancies between the two methods. Results: Two hundred forty-three pwMS were included; discrepancies in AS and in EDDS assessments between GM® and routine clinical methods were found in 81/243 (33.3%) and 74/243 (30.4%) pwMS, respectively. Progressive phenotype (odds ratio [OR] = 2.8; 95% confidence interval [CI] 1.1–7.11, p = 0.03), worse fatigue (OR = 1.03; 95% CI 1.01–1.06, p = 0.01), and more severe depression (OR = 1.1; 95% CI 1.04–1.17, p = 0.002) were associated with discrepancies between GM® and routine clinical scoring. Conclusion: GM® could easily be used in a real-life clinical setting to calculate the AS and the related EDSS scores. GM® should be considered for validation in further clinical studies

    Brain atrophy and lesion load in a large population of patients with multiple sclerosis

    Get PDF
    OBJECTIVE: To measure white matter (WM) and gray matter (GM) atrophy and lesion load in a large population of patients with multiple sclerosis (MS) using a fully automated, operator-independent, multiparametric segmentation method. METHODS: The study population consisted of 597 patients with MS and 104 control subjects. The MRI parameters were abnormal WM fraction (AWM-f), global WM-f (gWM-f), and GM fraction (GM-f). RESULTS: Significant differences between patients with MS and control subjects included higher AWM-f and reduced gWM-f and GM-f. MRI data showed significant differences between patients with relapsing-remitting and secondary progressive forms of MS. Significant correlations between MRI parameters and between MRI and clinical data were found. CONCLUSIONS: Patients with multiple sclerosis have significant atrophy of both white matter (WM) and gray matter (GM); secondary progressive patients have significantly more atrophy of both WM and GM than do relapsing-remitting patients and a significantly higher lesion load (abnormal WM fraction); lesion load is related to both WM and even more to GM atrophy; lesion load and WM and GM atrophy are significantly related to Expanded Disability Status Scale score and age at onset (suggesting that the younger the age at disease onset, the worse the lesion load and brain atrophy); and GM atrophy is the most significant MRI variable in determining the final disabilit
    • …
    corecore