76 research outputs found

    Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings: a critical review

    Get PDF
    Mesoporous silica nanoparticles with properly designed textural properties and tailored release of corrosion inhibitors are highly efficient smart carriers for advanced anticorrosive nanocomposite coatings

    Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications.

    Get PDF
    Silver-montmorillonite (Ag-MMT) antimicrobial nanoparticles were obtained by allowing silver ions from nitrate solutions to replace the Na(+) of natural montmorillonite and to be reduced by thermal treatment. The Ag-MMT nanoparticles were embedded in agar, zein, and poly(Δ-caprolactone) polymer matrices. These nanocomposites were tested in vitro with a three-strain cocktail of Pseudomonas spp. to assess antimicrobial effectiveness. The results indicate that Ag-MMT nanoparticles embedded into agar may have antimicrobial activity against selected spoilage microorganisms. No antimicrobial effects were recorded with active zein and poly(Δ-caprolactone). The water content of the polymeric matrix was the key parameter associated with antimicrobial effectiveness of this active system intended for food packaging applications

    Hybridization of Nafion membranes by the infusion of functionalized siloxane precursors

    Get PDF
    Polysiloxane modified hybrid membranes were prepared by introducing pre-swelled commercial Nafion membrane into a sol-gel precursor solution, consisting of a pre-hydrolyzed mixture of tetraethoxysilane (TEOS) and a mercaptan functionalized organoalkoxysilane. The structure of the polysiloxane network was changed by altering the ratio of the two silane components within the precursor solution. The mercaptosilane modifier was used to provide an additional source of acidic Bronsted sites through the oxidisation of the mercaptan groups to sulfonic acid groups. The physical and chemical properties of the hybrid membranes were examined by TGA, FTIR and SEM analysis. The water vapour sorption and proton conductivity characteristics were evaluated at temperatures up to 70°C and with water activity in the region of 0.4 to 1. It was found that the polysiloxane network alters the water vapour sorption mechanism of the Nafion membrane, resulting in an increase in the equilibrium amount of water absorbed in the middle range of water activity (0.4-0.6). At the same time, the increased water absorption capability produced a concomitant increase in ionic conductivity at low water activities

    Influence of silsesquioxane addition on polyurethane-based protective coatings for bronze surfaces

    Get PDF
    Two-component solvent-born polyurethane coatings for the protection of bronze from corrosion were prepared. Trisilanol-heptaisooctyl polyhedral oligomeric silsesquixane (POSS) nanoparticles were exploited to increase the coating protective efficiency. Its improvement was confirmed through a combination of characterisation techniques. In particular, the POSS addition caused an increase of the water contact angle, and an enhancement of the elastic connotation and abrasion resistance of the polyurethane coating. Potentiodynamic polarisation measurements also indicated that the coating containing POSS nanoparticles has an improved protection efficiency. Impedance spectroscopy revealed that the magnitude of low-frequency impedance of polyurethane coatings decreased more for the coating without POSS during exposure in electrolyte for thirty days. Ex situ IR reflection-absorption spectroelectrochemistry was exploited to get insight into the degradation of coatings during chronocoulometric charging at anodic potentials. IR reflection-absorption technique was also used to evaluate any possible effect of different stripper solutions on the bronze substrate

    Effects of post cure treatment in the glass transformation range on the structure and fire behavior of in situ generated siilica/epoxy hybrids

    Get PDF
    A new "in situ” sol–gel synthesis procedure was exploited to produce silica/epoxy nanocomposites with 6 wt.% maximum silica content. 3-Aminopropyltriethoxysilane (APTS) was used as a coupling agent. The experimental results (fourier- transform infrared spectroscopy, FTIR, small-angle X-ray scattering, SAXS, transmission electron microscopy, TEM, nuclear magnetic resonance, NMR, and dynamic mechanical analysis, DMA) support that the structure consists of nanosized silica particles (maximum 1.25 nm in size) embedded in a hybrid co-continuous network. A post cure non-isothermal heating from 15 to 100 °C (beyond the Tg of the neat epoxy) caused Tg and storage modulus to increase. The fire behavior, that, owing to severe regulations (i.e., in aerospace engineering), often prevents composites applications, was also studied. The formed silica domains prevented melt dripping phenomena during vertical flame spread tests. Cone calorimetry tests showed a remarkable decrease of the heat release rate (HRR) for all the hybrid systems with respect to the neat cured resin, even at very low silica loadings (i.e., 2 wt.%). This decrease was much more pronounced for the hybrid structures that were not subjected to the post cure thermal treatment. The use of multiple structural investigation techniques allowed to choose among multiple hypothesis and conclude that nanoparticles clustering is the main reason of the effects of the post curing treatments

    Correction: High piezo-resistive performances of anisotropic composites realized by embedding rGO-based chitosan aerogels into open cell polyurethane foams

    Get PDF
    Correction for 'High piezo-resistive performances of anisotropic composites realized by embedding rGO-based chitosan aerogels into open cell polyurethane foams' by Tianliang Zhai et al., Nanoscale, 2019, 11, 8835–8844

    Peculiarities in the structure - properties relationship of epoxy-silica hybrids with highly organic siloxane domains

    Get PDF
    Epoxy-silica hybrids were produced from a diglycidyl ether of bisphenol-A resin using Jeffamine 230 hardener with a two-step in situ generation of siloxane domains. The siloxane component was obtained by hydrolysis and condensation of a mixture of Îł-glycidoxypropyl-trimethoxysilane and tetraethoxysilane, which was added to the epoxy resin after removal of the formed alcohols and water. The morphological structure of the hybrids was examined by TEM, SAXS and WAXS analysis, and confirmation of the identified co-continuity of the constitutive phases for nominal silica contents greater than 18%wt was obtained by TGA and DMA analysis. While the loss modulus was found to increase monotonically over the entire range of siloxane content, the glass transition temperature exhibited a stepwise increase upon reaching the conditions for phase co-continuity. Molecular dynamics simulations were used to produce model structures for silsequioxanes cage-like structures, as main constituents of the siloxane phase. The predicted interdomain distance between the silsequioxane structures was in agreement with the SAXS experimental data

    MWCNT/rGO/natural rubber latex dispersions for innovative, piezo‐resistive and cement‐based composite sensors

    Get PDF
    The present study is focused on the development and characterization of innovative cementitious-based composite sensors. In particular, multifunctional cement mortars with enhanced piezoresistive properties are realized by exploiting the concept of confinement of Multiwall Carbon Nanotubes (MWCNTs) and reduced Graphene Oxide (rGO) in a three-dimensional percolated network through the use of a natural-rubber latex aqueous dispersion. The manufactured cement-based composites were characterized by means of Inelastic Neutron Scattering to assess the hydration reactions and the interactions between natural rubber and the hydrated-cement phases and by Scanning Electron Microscopy and X-Ray diffraction to evaluate the morphological and mineralogical structure, respectively. Piezo-resistive properties to assess electro-mechanical behavior in strain condition are also measured. The results show that the presence of natural rubber latex allows to obtain a three-dimensional rGO/MWCNTs segregate structure which catalyzes the formation of hydrated phases of the cement and increases the piezo-resistive sensitivity of mortar composites, representing a reliable approach in developing innovative mortar-based piezoresistive strain sensors

    Processo de produção de grafeno e uso do mesmo

    Get PDF
    Consiglio Nazionale delle RicercheSichuan UniversityUniversidade Federal do Rio Grande do SulQuĂ­micaDepositad

    The synergistic effect of an imidazolium salt and benzotriazole on the protection of bronze surfaces with chitosan-based coatings

    Get PDF
    Abstract The class of imidazolium salts contains effective anticorrosion additives for metal substrates. This study evaluated the potential of 1-carboxymethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (HO 2 CC 1 MImNTf 2 ) for application in cultural heritage, exploring it as anticorrosion additive in chitosan-based coatings for the protection of copper-based alloys. Under accelerated corrosion conditions with HCl vapor, the chitosan coating with HO 2 CC 1 MImNTf 2 was less effective than the one with benzotriazole. The coating with a combination of HO 2 CC 1 MImNTf 2 and benzotriazole resulted in the optimal protective efficacy of the bronze surface, and it also maintained high transparency without changing the bronze appearance
    • 

    corecore