2,542 research outputs found

    The Glue Around Quarks and the Interquark Potential

    Get PDF
    The quarks of quark models cannot be identified with the quarks of the QCD Lagrangian. We review the restrictions that gauge field theories place on any description of physical (colour) charges. A method to construct charged particles is presented. The solutions are applied to a variety of applications. Their Green's functions are shown to be free of infra-red divergences to all orders in perturbation theory. The interquark potential is analysed and it is shown that the interaction responsible for anti-screening results from the force between two separately gauge invariant constituent quarks. A fundamental limit on the applicability of quark models is identified.Comment: 4 pages, LaTeX, talk given at Montpellier meeting QCD9

    Intermolecular C-H...N and C-H...O interactions in (2S,4S,5R)-(-)-3,4-dimethyl-5-phenyl-2-(1,3-thiazol-2-yl)-1,3-oxazolidine

    Get PDF
    The title compound, C₁₄H₁₆N₂OS, prepared from (1R,2S)-(-)-ephedrine, contains the oxazolidine ring in an envelope conformation, with the nitrogen atom 0.623 (2) Å from the plane of the other four oxazolidine ring atoms. Intermolecular C--H...N and C--H...O interactions generate a two-dimensional hydrogen-bonded network, with shortest C...N and C...O distances of 3.403 (3) and 3.463 (2) Å, respectively

    Colour, copies and confinement

    Get PDF
    In this paper we construct a wide class of Gribov copies in Coulomb gauge SU(2) gauge theory. Infinitesimal copies are studied in some detail and their non-perturbative nature is made manifest. As an application it is shown that the copies prevent a non-perturbative definition of colour charge.Comment: 25 pages, 10 figures. Minor changes, two references added. Published versio

    The Nielsen Identities for the Two-Point Functions of QED and QCD

    Get PDF
    We consider the Nielsen identities for the two-point functions of full QCD and QED in the class of Lorentz gauges. For pedagogical reasons the identities are first derived in QED to demonstrate the gauge independence of the photon self-energy, and of the electron mass shell. In QCD we derive the general identity and hence the identities for the quark, gluon and ghost propagators. The explicit contributions to the gluon and ghost identities are calculated to one-loop order, and then we show that the quark identity requires that in on-shell schemes the quark mass renormalisation must be gauge independent. Furthermore, we obtain formal solutions for the gluon self-energy and ghost propagator in terms of the gauge dependence of other, independent Green functions.Comment: 25 pages, plain TeX, 4 figures available upon request, MZ-TH/94-0

    Description of Gluon Propagation in the Presence of an A^2 Condensate

    Full text link
    There is a good deal of current interest in the condensate A^2 which has been seen to play an important role in calculations which make use of the operator product expansion. That development has led to the publication of a large number of papers which discuss how that condensate could play a role in a gauge-invariant formulation. In the present work we consider gluon propagation in the presence of such a condensate which we assume to be present in the vacuum. We show that the gluon propagator has no on-mass-shell pole and, therefore, a gluon cannot propagate over extended distances. That is, the gluon is a nonpropagating mode in the gluon condensate. In the present work we discuss the properties of both the Euclidean-space and Minkowski-space gluon propagator. In the case of the Euclidean-space propagator we can make contact with the results of QCD lattice calculations of the propagator in the Landau gauge. With an appropriate choice of normalization constants, we present a unified representation of the gluon propagator that describes both the Minkowski-space and Euclidean-space dynamics in which the A^2 condensate plays an important role.Comment: 28 pages, 11 figure

    Comment on ``A New Symmetry for QED'' and ``Relativistically Covariant Symmetry in QED''

    Get PDF
    We show that recently found symmetries in QED are just non-local versions of standard BRST symmetry.Comment: 4 pages, revte

    On the Significance of the Quantity "A Squared"

    Full text link
    We consider the gauge potential A and argue that the minimum value of the volume integral of A squared (in Euclidean space) may have physical meaning, particularly in connection with the existence of topological structures. A lattice simulation comparing compact and non-compact ``photodynamics'' shows a jump in this quantity at the phase transition, supporting this idea.Comment: 6 pages, one figur

    Concurrent optimization of airframe and engine design parameters

    Get PDF
    An integrated system for the multidisciplinary analysis and optimization of airframe and propulsion design parameters is being developed. This system is known as IPAS, the Integrated Propulsion/Airframe Analysis System. The traditional method of analysis is one in which the propulsion system analysis is loosely coupled to the overall mission performance analysis. This results in a time consuming iterative process. First, the engine is designed and analyzed. Then, the results from this analysis are used in a mission analysis to determine the overall aircraft performance. The results from the mission analysis are used as a guide as the engine is redesigned and the entire process repeated. In IPAS, the propulsion system, airframe, and mission are closely coupled. The propulsion system analysis code is directly integrated into the mission analysis code. This allows the propulsion design parameters to be optimized along with the airframe and mission design parameters, significantly reducing the time required to obtain an optimized solution
    • 

    corecore