6 research outputs found

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.</jats:p

    OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.)

    No full text
    ClpB-cytoplasmic (ClpB-cyt)/Hsp100 is an important chaperone protein in rice. Cellular expression of OsClpB-cyt transcript is governed by heat stress, metal stress, and developmental cues. Transgenic rice plants produced with 2 kb OsClpB-cyt promoter driving Gus reporter gene showed heat- and metal-regulated Gus expression in vegetative tissues and constitutive Gus expression in calli, flowering tissues, and embryonal half of seeds. Rice seedlings regenerated with OsClpB-cyt promoter fragment with deletion of its canonical heat shock element sequence (HSE<SUB>-273 to -280</SUB>) showed not only heat shock inducibility of Gus transcript/protein but also constitutive expression of Gus in vegetative tissues. It thus emerges that the only classical HSE present in OsClpB-cyt promoter is involved in repressing expression of OsClpB-cyt transcript under unstressed control conditions. Yeast one-hybrid assays suggested that OsHsfA2c specifically interacts with OsClpB-cyt promoter. OsHsfA2c also showed binding with OsClpB-cyt and OsHsfB4b showed binding with OsClpB-cyt; notably, interaction of OsHsfB4b was seen for all three OsClpB/Hsp100 protein isoforms (i.e., ClpB-cytoplasmic, ClpB-mitochondrial, and ClpB-chloroplastic). Furthermore, OsHsfB4b showed interaction with OsHsfA2c. This study suggests that OsHsfA2c may play a role as transcriptional activator and that OsHsfB4b is an important part of this heat shock responsive circuitry

    Binding affinities and interactions among different heat shock element types and heat shock factors in rice (Oryza sativa L.)

    No full text
    Binding of heat shock factors (Hsfs) to heat shock elements (HSEs) leads to transcriptional regulation of heat shock genes. Genome-wide, 953 rice genes contain perfect-type, 695 genes gap-type and 1584 genes step-type HSE sequences in their 1-kb promoter region. The rice genome contains 13 class A, eight class B and four class C Hsfs (OsHsfs) and has OsHsf26 (which is of variant type) genes. Chemical cross-linking analysis of in vitro synthesized OsHsf polypeptides showed formation of homotrimers of OsHsfA2c, OsHsfA9 and OsHsfB4b proteins. Binding analysis of polypeptides with oligonucleotide probes containing perfect-, gap-, and step-type HSE sequences showed that OsHsfA2c, OsHsfA9 and OsHsfB4b differentially recognize various model HSEs as a function of varying reaction temperatures. The homomeric form of OsHsfA2c and OsHsfB4b proteins was further noted by the bimolecular fluorescence complementation approach in onion epidermal cells. In yeast two-hybrid assays, OsHsfB4b showed homomeric interaction as well as distinct heteromeric interactions with OsHsfA2a, OsHsfA7, OsHsfB4c and OsHsf26. Transactivation activity was noted in OsHsfA2c, OsHsfA2d, OsHsfA9, OsHsfC1a and OsHsfC1b in yeast cells. These differential patterns pertaining to binding with HSEs and protein-protein interactions may have a bearing on the cellular functioning of OsHsfs under a range of different physiological and environmental conditions
    corecore