9 research outputs found

    OPENING THE DOOR TO THE LARGE SCALE USE OF CLINICAL LAB MEASURES FOR ASSOCIATION TESTING: EXPLORING DIFFERENT METHODS FOR DEFINING PHENOTYPES

    Get PDF
    The past decade has seen exponential growth in the numbers of sequenced and genotyped individuals and a corresponding increase in our ability of collect and catalogue phenotypic data for use in the clinic. We now face the challenge of integrating these diverse data in new ways new that can provide useful diagnostics and precise medical interventions for individual patients. One of the first steps in this process is to accurately map the phenotypic consequences of the genetic variation in human populations. The most common approach for this is the genome wide association study (GWAS). While this technique is relatively simple to implement for a given phenotype, the choice of how to define a phenotype is critical. It is becoming increasingly common for each individual in a GWAS cohort to have a large profile of quantitative measures. The standard approach is to test for associations with one measure at a time; however, there are many justifiable ways to define a set of phenotypes, and the genetic associations that are revealed will vary based on these definitions. Some phenotypes may only show a significant genetic association signal when considered together, such as through principle components analysis (PCA). Combining correlated measures may increase the power to detect association by reducing the noise present in individual variables and reduce the multiple hypothesis testing burden. Here we show that PCA and k-means clustering are two complimentary methods for identifying novel genotype-phenotype relationships within a set of quantitative human traits derived from the Geisinger Health System electronic health record (EHR). Using a diverse set of approaches for defining phenotype may yield more insights into the genetic architecture of complex traits and the findings presented here highlight a clear need for further investigation into other methods for defining the most relevant phenotypes in a set of variables. As the data of EHR continue to grow, addressing these issues will become increasingly important in our efforts to use genomic data effectively in medicine

    Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease.

    Get PDF
    IMPORTANCE: The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene (LPL) lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship of LPL to human disease. OBJECTIVE: To determine whether rare and/or common variants in LPL are associated with early-onset coronary artery disease (CAD). DESIGN, SETTING, AND PARTICIPANTS: In a cross-sectional study, LPL was sequenced in 10 CAD case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between 2010 and 2015. Common variants were genotyped in up to 305 699 individuals of the Global Lipids Genetics Consortium and up to 120 600 individuals of the CARDIoGRAM Exome Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis. EXPOSURES: Rare damaging mutations in LPL included loss-of-function variants and missense variants annotated as pathogenic in a human genetics database or predicted to be damaging by computer prediction algorithms trained to identify mutations that impair protein function. Common variants in the LPL gene region included those independently associated with circulating triglyceride levels. MAIN OUTCOMES AND MEASURES: Circulating lipid levels and CAD. RESULTS: Among 46 891 individuals with LPL gene sequencing data available, the mean (SD) age was 50 (12.6) years and 51% were female. A total of 188 participants (0.40%; 95% CI, 0.35%-0.46%) carried a damaging mutation in LPL, including 105 of 32 646 control participants (0.32%) and 83 of 14 245 participants with early-onset CAD (0.58%). Compared with 46 703 noncarriers, the 188 heterozygous carriers of an LPL damaging mutation displayed higher plasma triglyceride levels (19.6 mg/dL; 95% CI, 4.6-34.6 mg/dL) and higher odds of CAD (odds ratio = 1.84; 95% CI, 1.35-2.51; P < .001). An analysis of 6 common LPL variants resulted in an odds ratio for CAD of 1.51 (95% CI, 1.39-1.64; P = 1.1 × 10-22) per 1-SD increase in triglycerides. CONCLUSIONS AND RELEVANCE: The presence of rare damaging mutations in LPL was significantly associated with higher triglyceride levels and presence of coronary artery disease. However, further research is needed to assess whether there are causal mechanisms by which heterozygous lipoprotein lipase deficiency could lead to coronary artery disease

    Systematic characterization of germline variants from the DiscovEHR study endometrial carcinoma population

    No full text
    Abstract Background Endometrial cancer (EMCA) is the fifth most common cancer among women in the world. Identification of potentially pathogenic germline variants from individuals with EMCA will help characterize genetic features that underlie the disease and potentially predispose individuals to its pathogenesis. Methods The Geisinger Health System’s (GHS) DiscovEHR cohort includes exome sequencing on over 50,000 consenting patients, 297 of whom have evidence of an EMCA diagnosis in their electronic health record. Here, rare variants were annotated as potentially pathogenic. Results Eight genes were identified as having increased burden in the EMCA cohort relative to the non-cancer control cohort. None of the eight genes had an increased burden in the other hormone related cancer cohort from GHS, suggesting they can help characterize the underlying genetic variation that gives rise to EMCA. Comparing GHS to the cancer genome atlas (TCGA) EMCA germline data illustrated 34 genes with potentially pathogenic variation and eight unique potentially pathogenic variants that were present in both studies. Thus, similar germline variation among genes can be observed in unique EMCA cohorts and could help prioritize genes to investigate for future work. Conclusion In summary, this systematic characterization of potentially pathogenic germline variants describes the genetic underpinnings of EMCA through the use of data from a single hospital system

    Protein-Truncating Variants at the Cholesteryl Ester Transfer Protein Gene and Risk for Coronary Heart Disease

    No full text
    RATIONALE: Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition. OBJECTIVE: To test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD. METHODS AND RESULTS: We sequenced the exons of the CETP gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; P<1.0×10-4), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; P=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; P=5.1×10-3). CONCLUSIONS: Compared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD

    Protein-Truncating Variants at the Cholesteryl Ester Transfer Protein Gene and Risk for Coronary Heart DiseaseNovelty and Significance

    No full text
    Rationale: Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition. Objective: To test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD. Methods and Results: We sequenced the exons of the CETP gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; P<1.0×10-4), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; P=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; P=5.1×10-3). Conclusions: Compared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD
    corecore