58 research outputs found

    Loss or gain of function? Effects of ion channel mutations on neuronal firing depend on the neuron type

    Get PDF
    IntroductionClinically relevant mutations to voltage-gated ion channels, called channelopathies, alter ion channel function, properties of ionic currents, and neuronal firing. The effects of ion channel mutations are routinely assessed and characterized as loss of function (LOF) or gain of function (GOF) at the level of ionic currents. However, emerging personalized medicine approaches based on LOF/GOF characterization have limited therapeutic success. Potential reasons are among others that the translation from this binary characterization to neuronal firing is currently not well-understood—especially when considering different neuronal cell types. In this study, we investigate the impact of neuronal cell type on the firing outcome of ion channel mutations.MethodsTo this end, we simulated a diverse collection of single-compartment, conductance-based neuron models that differed in their composition of ionic currents. We systematically analyzed the effects of changes in ion current properties on firing in different neuronal types. Additionally, we simulated the effects of known mutations in KCNA1 gene encoding the KV1.1 potassium channel subtype associated with episodic ataxia type 1 (EA1).ResultsThese simulations revealed that the outcome of a given change in ion channel properties on neuronal excitability depends on neuron type, i.e., the properties and expression levels of the unaffected ionic currents.DiscussionConsequently, neuron-type specific effects are vital to a full understanding of the effects of channelopathies on neuronal excitability and are an important step toward improving the efficacy and precision of personalized medicine approaches

    4-Aminopyridine is a promising treatment option for patients with gain-of-function KCNA2-encephalopathy

    Get PDF
    Developmental and epileptic encephalopathies are devastating disorders characterized by epilepsy, intellectual disability, and other neuropsychiatric symptoms, for which available treatments are largely ineffective. Following a precision medicine approach, we show for KCNA2-encephalopathy that the K+ channel blocker 4-aminopyridine can antagonize gain-of-function defects caused by variants in the KV1.2 subunit in vitro, by reducing current amplitudes and negative shifts of steady-state activation and increasing the firing rate of transfected neurons. In n-of-1 trials carried out in nine different centers, 9 of 11 patients carrying such variants benefitted from treatment with 4-aminopyridine. All six patients experiencing daily absence, myoclonic, or atonic seizures became seizure-free (except some remaining provoked seizures). Two of six patients experiencing generalized tonic-clonic seizures showed marked improvement, three showed no effect, and one worsening. Nine patients showed improved gait, ataxia, alertness, cognition, or speech. 4-Aminopyridine was well tolerated up to 2.6 mg/kg per day. We suggest 4-aminopyridine as a promising tailored treatment in KCNA2-(gain-of-function)–encephalopathy and provide an online tool assisting physicians to select patients with gain-of-function mutations suited to this treatment

    Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals

    Get PDF
    Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    In-plane motions of the stapes in human ears

    Full text link
    The piston-like (translation normal to the footplate) and rocking-like (rotation along the long and short axes of the footplate) are generally accepted as motion components of the human stapes. It has been of issue whether in-plane motions, i.e., transversal movements of the footplate in the oval window, are comparable to these motion components. In order to quantify the in-plane motions the motion at nine points on the medial footplate was measured in five temporal bones with the cochlea drained using a three-dimensional (3D) laser Doppler vibrometer. It was found that the stapes shows in-plane movements up to 19.1 ± 8.7% of the piston-like motion. By considering possible methodological errors, i.e., the effects of the applied reflective glass beads and of alignment of the 3D laser Doppler system, such value was reduced to be about 7.4 ± 3.1%. Further, the in-plane motions became minimal ( ≈ 4.2 ± 1.4% of the piston-like motion) in another plane, which was anatomically within the footplate. That plane was shifted to the lateral direction by 118 Όm, which was near the middle of the footplate, and rotated by 4.7° with respect to the medial footplate plane
    • 

    corecore