39 research outputs found

    IS THERE A RATE-LIMITING STEP BEFORE GTP CLEAVAGE BY H-RAS P21?

    No full text

    Crystallization and preliminary X-ray crystallographic study of the Ras-GTPase-activating domain of human p120GAP

    No full text
    Ras-GTPase-activating proteins (Ras-GAPs) are important regulators of the biological activity of Ras within the framework of intracellular communication where GTP-bound Ras (Ras:GTP) is a key signal transducing molecule (Trahey and McCormick, Science 238:542–545, 1987; Boguski and McCormick, Nature 366:643–654, 1993). By accelerating Ras-mediated GTP hydrolysis, Ras-GAPs provide an efficient means to reset the Ras- GTPase cycle to the GDP-bound ‘OFF’-state and terminate the Ras-mediated signal. Here we report the crystallization of the GTPaseactivating domain of the human p120GAP. The crystals belong to the orthorhombic space group symmetry P212121 with unit cell dimensions of a 5 42.2 Å, b 5 55.6 Å, c 5 142.2 Å, a 5 b 5 g 5 90°. Assuming a Matthews parameter of 2.2 Å3/Da, there is one molecule per asymmetric unit. Applying micro-seeding techniques, we grew large single crystals that could not be obtained by other routine methods for crystal improvement. They diffracted to a resolution of approximately 3 Å using X-rays from a rotating anode generator and to better than 1.8 Å in a synchrotron beam. Chemical cross-linking led to reduction of the maximum resolution but to significantly increased stability against mechanical and heavy atom stres

    The inhibition of the GTPase activating protein-Ha-ras interaction by acidic lipids is due to physical association of the C-terminal domain of the GTPase activating protein with micellar structures.

    No full text
    The effects of fatty acids and phospholipids on the interaction of the full-length GTPase activating protein (GAP) as well as its isolated C-terminal domain and the Ha-ras proto-oncogene product p21 were studied by various methods, viz. GTPase activity measurements, fluorescence titrations and gel permeation chromatography. It is shown that all fatty acids and acidic phospholipids tested, provided the critical micellar concentration and the critical micellar temperature are reached, inhibit the GAP stimulated p21 GTPase activity. This is interpreted to mean that it is not the molecular structure of acidic lipid molecules per se but rather their physical state of aggregation which is responsible for the inhibitory effect of lipids on the GTPase activity. The relative inhibitory potency of various lipids was measured under defined conditions with mixed Triton X-100 micelles to follow the order: unsaturated fatty acids greater than saturated acids approximately phosphatidic acids greater than or equal to phosphatidylinositol phosphates much greater than phosphatidylinositol and phosphatidylserine. GTPase experiments with varying concentrations of p21 and constant concentrations of GAP and lipids indicate that the binding of GAP by the lipid micelles is responsible for the inhibition, a finding which was confirmed by fluorescence titrations and gel filtrations which show that the C-terminal domain of GAP is bound by lipid micelles

    Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras

    No full text
    RAS-RELATED GTP-binding proteins function as molecular switches which cycle between GTP-bound 'on'- and GDP-bound 'off'-states1. GTP hydrolysis is the common timing mechanism that mediates the return from the 'on' to the 'off'-state. It is usually slow but can be accelerated by orders of magnitude upon inter-action with GTPase-activating proteins (GAPs). In the case of Ras, a major regulator of cellular growth, point mutations are found in approximately 30% of human tumours which render the protein unable to hydrolyse GTP, even in the presence of Ras-GAPs. The first structure determination of a GTPase-activating protein reveals the catalytically active fragment of the Ras-specific p120GAP (ref. 2), GAP-334, as an elongated, exclusively helical protein which appears to represent a novel protein fold. The molecule consists of two domains, one of which contains all the residues conserved among different GAPs for Ras. From the location of conserved residues around a shallow groove in the central domain we can identify the site of interaction with Ras·GTP. This leads to a model for the interaction between Ras and GAP that satisfies numerous biochemical and genetic data on this important regulatory process

    Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras

    No full text
    Ras-related GTP-binding proteins function as molecular switches which cycle between GTP-bound 'on'- and GDP-bound 'off'-states. GTP hydrolysis is the common timing mechanism that mediates the return from the 'on' to the 'off'-state. It is usually slow but can be accelerated by orders of magnitude upon interaction with GTPase-activating proteins (GAPs). In the case of Ras, a major regulator of cellular growth, point mutations are found in approximately 30% of human tumours which render the protein unable to hydrolyse GTP, even in the presence of Ras-GAPs. The first structure determination of a GTPase-activating protein reveals the catalytically active fragment of the Ras-specific p120GAP (ref. 2), GAP-334, as an elongated, exclusively helical protein which appears to represent a novel protein fold. The molecule consists of two domains, one of which contains all the residues conserved among different GAPs for Ras. From the location of conserved residues around a shallow groove in the central domain we can identify the site of interaction with Ras x GTP. This leads to a model for the interaction between Ras and GAP that satisfies numerous biochemical and genetic data on this important regulatory proces

    Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity.

    No full text
    The GTPase-activating protein (GAP) stimulates the GTPase reaction of p21 by 5 orders of magnitude such that the kcat of the reaction is increased to 19 s-1. Mutations of residues in loop L1 (Gly-12 and Gly-13), in loop L2 (Thr-35 and Asp-38), and in loop L4 (Gln-61 and Glu-63) influence the reaction in different ways, but all of these mutant p21 proteins still form complexes with GAP. The C-terminal domain of the human GAP gene product, GAP334, which comprises residues 714 to 1047, is 20 times less active than full-length GAP on a molar basis and has a fourfold lower affinity. This finding indicates that the N terminus of GAP containing the SH2 domains modifies the interaction between the catalytic domain and p21

    Analgesie - Freund oder Feind?

    No full text
    corecore