36 research outputs found

    Micron-scale vertical beam size measurements based on transition radiation imaging with a Schwarzschild objective

    Get PDF
    This report presents preliminary results of a measurement of a micron–scale vertical beam size based on imaging of optical transition radiation in the visible region. The visualization of point spread function dominated beam images was carried out using a Schwarzschild objective that provides high magnification and that is free of some of aberrations. According to the preliminary data treatment, a vertical rms beam size of 1.37 +- 0.07 micrometer was measured at the 855MeV beam of the Mainz Microtron MAMI (Germany)

    Impact of buffer gas quenching on the S-1(0) -> P-1(1) ground-state atomic transition in nobelium

    Get PDF
    International audienceUsing the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the studyof nobelium and beyond, where atomic properties are currently unknown

    Experimental access to Transition Distribution Amplitudes with the P̄ANDA experiment at FAIR

    Full text link

    Radiation collimation in a thick crystalline undulator

    No full text
    With the recent experimental confirmation of the existence of energetic radiation from a Small Amplitude, Small Period (SASP) crystalline undulator [T.N. Wistisen, K.K. Andersen, S. Yilmaz, R. Mikkelsen, J. Lundsgaard Hansen, U.I. Uggerhøj, W. Lauth, H. Backe, Phys. Rev. Lett. 112, 254801 (2014)], the field of specially manufactured crystals, from which specific radiation characteristics can be obtained, has evolved substantially. In this paper we confirm the existence of the crystalline undulator radiation, using electrons of energies of 855 GeV from the MAinzer MIcrotron (MAMI) in a crystal that is approximately 10 times thicker than the previous one. Furthermore, we have measured a significant increase in enhancement, in good agreement with calculations, of the undulator peak by collimation to angles smaller than the natural opening angle of the radiation emission process, 1 /γ

    On laser spectroscopy of the element nobelium (Z = 102)

    No full text
    Optical transitions were sought for in 254No, which was produced at the UNILAC accelerator at GSI in the reaction 208Pb (48Ca, 2n)254No. After separation from the projectile beam by the velocity filter SHIP, the nobelium ions were stopped inside a buffer gas cell and guided onto a tantalum filament. The activation energy for desorption of nobelium from tantalum was determined to be 246   (24) kJ/mol. In a first experiment, the search for the 7s7p1P1 level of nobelium by laser resonance ionization spectroscopy was started. Based on level predictions by multi-configuration Dirac-Fock and relativistic coupled-cluster calculations, the wavenumber ranges from 25   900 cm-1 to 28   260 cm-1 and from 28   040 cm-1 to 31   000 cm-1 were scanned with two excimer laser-pumped dye lasers and a frequency doubled Nd:YAG laser pumped OPO system, respectively. The measurements delivered no clear evidence for a resonance. However, five wavenumber positions, viz. 27   997 cm-1, 28   015 cm-1, 28   230 cm-1, 28   792 cm-1, and 29   516 cm-1, remain potential candidates for the transition and subject for upcoming investigations

    Enhanced electromagnetic radiation in oriented scintillating crystals at the 100-MeV and sub-GeV scales

    No full text
    Nowadays, it is well known that the electromagnetic interaction between high-energy particles and matter experiences substantial modifications when the latter consists of a crystalline medium and its lattice axes are almost parallel to the input beam direction. In particular, a strong boost to the cross section of bremsstrahlung by electrons and positrons in high-density oriented crystals has been observed in the 1010-to-100 mathrmGeV100~mathrm{GeV} regime. This effect proves particularly appealing when it comes to inorganic scintillators, given the possibility to exploit it for the development of high-performance, ultra-compact electromagnetic calorimeters. This work provides a detailed discussion of the results obtained by probing a PWO (lead tungstate) oriented sample with 120 mathrmGeV/c120~mathrm{GeV}/c electrons and positrons at the CERN North Area: in particular, a comparison between the outcomes obtained with electrons and positrons is made. Moreover, output radiation measurements on a thinner oriented PWO sample have been recently performed in the sub-GeV regime at the MAMI-B facility: an overview on the resulting characterisation is given
    corecore