1,173 research outputs found

    Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity

    Get PDF
    Local translation meets protein turnover and plasticity demands at synapses, however, the location of its energy supply is unknown. We found that local translation in neurons is powered by mitochondria and not by glycolysis. Super-resolution microscopy revealed that dendritic mitochondria exist as stable compartments of single or multiple filaments. To test if these mitochondrial compartments can serve as local energy supply for synaptic translation, we stimulated individual synapses to induce morphological plasticity and visualized newly synthesized proteins. Depletion of local mitochondrial compartments abolished both the plasticity and the stimulus-induced synaptic translation. These mitochondrial compartments serve as spatially confined energy reserves, as local depletion of a mitochondrial compartment did not affect synaptic translation at remote spines. The length and stability of dendritic mitochondrial compartments and the spatial functional domain were altered by cytoskeletal disruption. These results indicate that cytoskeletally tethered local energy compartments exist in dendrites to fuel local translation during synaptic plasticity

    Development of Simplified Models of Regional Groundwater and Surface Water Flow Processes based on Computational Experiments with Comprehensive Models

    Get PDF
    The development of complex decision support model systems for the analysis of regional water policies for regions with intense socio-economic development affecting and being affected by the water resources system is of increasing importance. One of the most illustrative examples are regions with open-pit lignite mining. Such model systems have to be based on appropriate submodels, e.g. for water quantity processes. The paper describes submodels for groundwater and surface water flow with special regard to open-pit lignite mining regions. Starting with a problem definition in Section 2 the methodological background is given. The state-of-the-art of comprehensive models of regional water flow processes based on groundwater flow models and of stochastic long-term management modeling are described in details. Section 3 gives the methodological approach for model reduction. The application of this approach is illustrated in Section 4 for the modeling of mine drainage and groundwater tables, for the modeling of remaining pit management and of groundwater-surface water interactions. In the appendix computer programs of some submodels are given being suitable for a more general application

    Are Facebook “Friends” Helpful? Development of a Facebook-Based Measure of Social Support and Examination of Relationships Among Depression, Quality of Life, and Social Support

    Full text link
    Greater social support is predictive of lower depression and higher quality of life (QOL). However, the way in which social support is provided has changed greatly with the expanding role of social networking sites (e.g., Facebook). While there are numerous anecdotal accounts of the benefits of Facebook-based social support, little empirical evidence exists to support these assertions, and there are no empirically validated measures designed to assess social support provided via this unique social networking medium. This study sought to develop an empirically sound measure of Facebook-based social support (Facebook Measure of Social Support [FMSS]) and to assess how this new measure relates to previously established measures of support and two outcome variables: depression and QOL. Following exploratory factor analysis, the FMSS was determined to assess four factors of social support on Facebook (Perceived, Emotional, Negative, Received/Instrumental). The Negative Support factor on the FMSS was most strongly related to both depression and QOL with magnitudes (and direction of relationships) comparable to a traditional measure of perceived social support. However, two FMSS factors (Received/Instrumental and Perceived) were unrelated to both mental health outcomes. Contrary to expectations, elevations in one FMSS factor (Emotional) was associated with worse symptoms of depression and poorer psychological QOL. When taken together, only the absence of negative social support on Facebook is significantly predictive of mental health functioning. Consequently, those hoping to use Facebook as a medium for reducing depression or improving QOL are unlikely to realize significant therapeutic benefits.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140349/1/cyber.2014.0538.pd

    Classification and stability of simple homoclinic cycles in R^5

    Full text link
    The paper presents a complete study of simple homoclinic cycles in R^5. We find all symmetry groups Gamma such that a Gamma-equivariant dynamical system in R^5 can possess a simple homoclinic cycle. We introduce a classification of simple homoclinic cycles in R^n based on the action of the system symmetry group. For systems in R^5, we list all classes of simple homoclinic cycles. For each class, we derive necessary and sufficient conditions for asymptotic stability and fragmentary asymptotic stability in terms of eigenvalues of linearisation near the steady state involved in the cycle. For any action of the groups Gamma which can give rise to a simple homoclinic cycle, we list classes to which the respective homoclinic cycles belong, thus determining conditions for asymptotic stability of these cycles.Comment: 34 pp., 4 tables, 30 references. Submitted to Nonlinearit

    A Novel Laboratory Course on Advanced Chemical Engineering Experiments

    Get PDF
    The chemical engineering curriculum in the United States has trained generations of technical experts who have successfully optimized chemical processes and products once they entered the chemical industry. The U.S. chemical industry, however, has entered a critical stage in which it must be able to create new and differentiated value through technical innovations that arc essential for long-term survival. This innovation process will require new skills that go far beyond the traditional expertise for the optimization of tasks possessed by young chemical engineers. The innovators must be able to identify new opportunities, explore the boundaries of technology, evaluate critical issues, develop and implement technologies, and communicate effectively with scientists and engineers from other disciplines. Therefore, one of the most important educational tasks of a modern university, in combination with a strong theoretical foundation, is to challenge students in laboratory courses to think, explore, hypothesize, plan, solve, and evaluate. The typical sequence of laboratory skills development stops short of introducing young engineers to the most critical aspects of experimental work. Chemical engineers usually begin developing their laboratory skills in chemistry courses, where experiments are closely managed. At this early stage in their development, students follow detailed instructions and learn basic principles by observing the results. In the undergraduate engineering laboratory course (the unit operations lab ), students have more freedom in experimental design but still have well-defined objectives and manipulate equipment someone else has set up. It is rare, however, for undergraduate students to be taught how to create new experiments. It is also rare for undergraduate students, and hence beginning graduate students, to have an appreciation for the care, planning, design, and testing required to produce equipment that will give reliable and useful results. Even such simple issues as leak testing or adapting analytical devices to new tasks are outside most students* experience. Even more important is an absence of opportunities to learn how the lessons learned from the failure of an approach can be fed back into the empirical process to seed the finally successful idea. All these skills require more creative freedom than is usually allowed in a well-structured laboratory course. In the novel laboratory teaching approach described here, we try to provide students with a learning environment that allows them to develop advanced experimental skills that are necessary for success in research and development environments

    The effect of force-field parameters on properties of liquids:Parametrization of a simple three-site model for methanol

    Get PDF
    A simple rigid three-site model for methanol compatible with the simple point charge (SPC) water and the GROMOS96 force field is parametrized and tested. The influence of different force-field parameters, such as the methanol geometry and the charge distribution on several properties calculated by molecular dynamics is investigated. In particular an attempt was made to obtain good agreement with experimental data for the static dielectric constant and the mixing enthalpy with water. The model is compared to other methanol models from the literature in terms of the ability to reproduce a range of experimental properties.<br/

    High- and low-mobility stages in the synaptic vesicle cycle.

    Get PDF
    Synaptic vesicles need to be mobile to reach their release sites during synaptic activity. We investigated vesicle mobility throughout the synaptic vesicle cycle using both conventional and subdiffraction-resolution stimulated emission depletion fluorescence microscopy. Vesicle tracking revealed that recently endocytosed synaptic vesicles are highly mobile for a substantial time period after endocytosis. They later undergo a maturation process and integrate into vesicle clusters where they exhibit little mobility. Despite the differences in mobility, both recently endocytosed and mature vesicles are exchanged between synapses. Electrical stimulation does not seem to affect the mobility of the two types of vesicles. After exocytosis, the vesicle material is mobile in the plasma membrane, although the movement appears to be somewhat limited. Increasing the proportion of fused vesicles (by stimulating exocytosis while simultaneously blocking endocytosis) leads to substantially higher mobility. We conclude that both high- and low-mobility states are characteristic of synaptic vesicle movement

    Synthesis of N-heterocycles from diamines via H2-driven NADPH recycling in the presence of O2

    Get PDF
    Herein, we report an enzymatic cascade involving an oxidase, an imine reductase and a hydrogenase for the H2-driven synthesis of N-heterocycles. Variants of putrescine oxidase from Rhodococcus erythropolis with improved activity were identified. Substituted pyrrolidines and piperidines were obtained with up to 97% product formation in a one-pot reaction directly from the corresponding diamine substrates. The formation of up to 93% ee gave insights into the specificity and selectivity of the putrescine oxidase.DFG, 53182490, EXC 314: Unifying Concepts in CatalysisDFG, 284111627, H2-basierende Kaskaden fĂĽr die Biosynthese von N-HeterocyclenTU Berlin, Open-Access-Mittel - 201

    H-2-driven biotransformation of n-octane to 1-octanol by a recombinant Pseudomonas putida strain co-synthesizing an O-2-tolerant hydrogenase and a P450 monooxygenase

    Get PDF
    An in vivo biotransformation system is presented that affords the hydroxylation of n-octane to 1-octanol on the basis of NADH-dependent CYP153A monooxygenase and NAD(+)-reducing hydrogenase heterologously synthesized in a bacterial host. The hydrogenase sustains H-2-driven NADH cofactor regeneration even in the presence of O-2, the co-substrate of monooxygenase.DFG, EXC 314, Unifying Concepts in CatalysisEC/FP7/297503/EU/Modular beads for regeneration of bio-cofactors in enzyme-catalysed synthesis/HydRege
    • …
    corecore