8 research outputs found

    An Easy-to-Implement Protocol for Preparing Postnatal Ventral Mesencephalic Cultures.

    Get PDF
    Postnatally derived cultures of ventral mesencephalic neurons offer several crucial advantages over embryonic ventral mesencephalic cultures, including a higher content of TH-positive cells and the ability to derive cells from the substantia nigra, which contains the neurons most vulnerable to Parkinson's disease. On the other hand, these cultures are more challenging to produce consistently. Here, we provide an easy-to-implement protocol for culturing postnatal ventral mesencephalic cells from the substantia nigra (SN) and the ventral tegmental area using commercially available media, dishes, and general lab equipment, avoiding extensive material and equipment purchases. The protocol can be completed in about 5 h and provides ventral midbrain neuron cultures on cortex glia feeder layers in three weeks' time. The protocol uses an optimized protease digestion, tissue storage in Hibernate A during dissection and purification of neurons on an OptiPrep density gradient

    C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction.

    Get PDF
    Alpha-synuclein is known to bind to small unilamellar vesicles (SUVs) via its N terminus, which forms an amphipathic alpha-helix upon membrane interaction. Here we show that calcium binds to the C terminus of alpha-synuclein, therewith increasing its lipid-binding capacity. Using CEST-NMR, we reveal that alpha-synuclein interacts with isolated synaptic vesicles with two regions, the N terminus, already known from studies on SUVs, and additionally via its C terminus, which is regulated by the binding of calcium. Indeed, dSTORM on synaptosomes shows that calcium mediates the localization of alpha-synuclein at the pre-synaptic terminal, and an imbalance in calcium or alpha-synuclein can cause synaptic vesicle clustering, as seen ex vivo and in vitro. This study provides a new view on the binding of alpha-synuclein to synaptic vesicles, which might also affect our understanding of synucleinopathies

    Protein phase separation hotspots at the presynapse

    Get PDF
    Peer reviewed: TrueFundamental discoveries have shaped our molecular understanding of presynaptic processes, such as neurotransmitter release, active zone organization and mechanisms of synaptic vesicle (SV) recycling. However, certain regulatory steps still remain incompletely understood. Protein liquid–liquid phase separation (LLPS) and its role in SV clustering and active zone regulation now introduce a new perception of how the presynapse and its different compartments are organized. This article highlights the newly emerging concept of LLPS at the synapse, providing a systematic overview on LLPS tendencies of over 500 presynaptic proteins, spotlighting individual proteins and discussing recent progress in the field. Newly discovered LLPS systems like ELKS/liprin-alpha and Eps15/FCho are put into context, and further LLPS candidate proteins, including epsin1, dynamin, synaptojanin, complexin and rabphilin-3A, are highlighted

    An Easy-to-Implement Protocol for Preparing Postnatal Ventral Mesencephalic Cultures

    No full text
    Postnatally derived cultures of ventral mesencephalic neurons offer several crucial advantages over embryonic ventral mesencephalic cultures, including a higher content of TH-positive cells and the ability to derive cells from the substantia nigra, which contains the neurons most vulnerable to Parkinson’s disease. On the other hand, these cultures are more challenging to produce consistently. Here, we provide an easy-to-implement protocol for culturing postnatal ventral mesencephalic cells from the substantia nigra (SN) and the ventral tegmental area using commercially available media, dishes, and general lab equipment, avoiding extensive material and equipment purchases. The protocol can be completed in about 5 h and provides ventral midbrain neuron cultures on cortex glia feeder layers in three weeks’ time. The protocol uses an optimized protease digestion, tissue storage in Hibernate A during dissection and purification of neurons on an OptiPrep density gradient

    An Easy-to-Implement Protocol for Preparing Postnatal Ventral Mesencephalic Cultures

    No full text
    Postnatally derived cultures of ventral mesencephalic neurons offer several crucial advantages over embryonic ventral mesencephalic cultures, including a higher content of TH-positive cells and the ability to derive cells from the substantia nigra, which contains the neurons most vulnerable to Parkinson's disease. On the other hand, these cultures are more challenging to produce consistently. Here, we provide an easy-to-implement protocol for culturing postnatal ventral mesencephalic cells from the substantia nigra (SN) and the ventral tegmental area using commercially available media, dishes, and general lab equipment, avoiding extensive material and equipment purchases. The protocol can be completed in about 5 h and provides ventral midbrain neuron cultures on cortex glia feeder layers in three weeks' time. The protocol uses an optimized protease digestion, tissue storage in Hibernate A during dissection and purification of neurons on an OptiPrep density gradient
    corecore