8 research outputs found

    MINARET, A DETERMINISTIC NEUTRON TRANSPORT SOLVER FOR NUCLEAR CORE CALCULATIONS

    Get PDF
    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared

    MINARET or the quest towards the use of time-dependent neutron transport solvers for nuclear core calculations on a regular basis

    Get PDF
    International audienceThe present paper deals with the resolution of the time-dependent neutron transport equation that is involved in the field of nuclear safety studies. Through the presentation of the newly implemented kinetic module in the MINARET solver [24] (developed at CEA in the framework of the APOLLO3\registered project), we aim first of all at presenting a brief and comprehensive overview of the most widespread resolution techniques employed nowadays in neutron transport industrial codes. Given that the main obstacle in the use of this type of accurate solver on a regular basis relies in the long computing times, MINARET has been used in the present work as a support to rigorously quantify the efficiency of the most common sequential and parallel acceleration techniques that are currently used in this field. An important part of the paper will be devoted to study the performances of an acceleration method that has never been considered before in the resolution of this equation, which is the parallelization of the time variable. In this regard, the parareal in time algorithm (a domain decomposition method for the time variable, [20]) has been implemented to explore its potentialities in this particular application

    Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    Get PDF
    We present a parareal in time algorithm for the simulation of neutron diffusion transient model. The method is made efficient by means of a coarse solver defined with large time steps and steady control rods model. Using finite element for the space discretization, our implementation provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner (LMW) benchmark [1]

    La methode nodale de Cronos : Minos. Approximation par des elements mixtes duaux

    No full text
    Available at INIST (FR), Document Supply Service, under shelf-number : RP 12864 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc
    corecore