21 research outputs found

    Communally breeding bats use physiological and behavioural adjustments to optimise daily energy expenditure

    Get PDF
    Small endotherms must change roosting and thermoregulatory behaviour in response to changes in ambient conditions if they are to achieve positive energy balance. In social species, for example many bats, energy expenditure is influenced by environmental conditions, such as ambient temperature, and also by social thermoregulation. Direct measurements of daily fluctuations in metabolic rates in response to ambient and behavioural variables in the field have not been technologically feasible until recently. During different reproductive periods, we investigated the relationships between ambient temperature, group size and energy expenditure in wild maternity colonies of Bechstein’s bats (Myotis bechsteinii). Bats used behavioural and physiological adjustments to regulate energy expenditure. Whether bats maintained normothermia or used torpor, the number of bats in the roosts as well changed with reproductive status and ambient temperature. During pregnancy and lactation, bats remained mostly normothermic and daily group sizes were relatively large, presumably to participate in the energetic benefits of social thermoregulation. In contrast, smaller groups were formed on days when bats used torpor, which occurred mostly during the post-lactation period. Thus, we were able to demonstrate on wild animals under natural conditions the significance of behavioural and physiological flexibility for optimal thermoregulatory behaviour in small endotherms

    The Accuracy of Survival Time Prediction for Patients with Glioma Is Improved by Measuring Mitotic Spindle Checkpoint Gene Expression

    Get PDF
    Identification of gene expression changes that improve prediction of survival time across all glioma grades would be clinically useful. Four Affymetrix GeneChip datasets from the literature, containing data from 771 glioma samples representing all WHO grades and eight normal brain samples, were used in an ANOVA model to screen for transcript changes that correlated with grade. Observations were confirmed and extended using qPCR assays on RNA derived from 38 additional glioma samples and eight normal samples for which survival data were available. RNA levels of eight major mitotic spindle assembly checkpoint (SAC) genes (BUB1, BUB1B, BUB3, CENPE, MAD1L1, MAD2L1, CDC20, TTK) significantly correlated with glioma grade and six also significantly correlated with survival time. In particular, the level of BUB1B expression was highly correlated with survival time (p<0.0001), and significantly outperformed all other measured parameters, including two standards; WHO grade and MIB-1 (Ki-67) labeling index. Measurement of the expression levels of a small set of SAC genes may complement histological grade and other clinical parameters for predicting survival time

    Response of a Specialist Bat to the Loss of a Critical Resource

    Get PDF
    Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations

    Characterization of a Novel Relapsing Fever Spirochete in the Midgut, Coxal Fluid, and Salivary Glands of the Bat Tick Carios kelleyi

    No full text
    Bat ticks, Carios kelleyi, from Iowa were examined for the presence of relapsing fever group borreliae. A novel spirochete was characterized by DNA sequence analysis of polymerase chain reaction amplicons for the 16S rRNA, flaB, and glpQ genes in either triturated tick pools or single ticks. All loci and the concatenated DNA sequence of 3,289 bases identified the Carios bacterium as a relapsing fever spirochete most closely related to, but distinct from, Borrelia turicatae. Spirochetes reactive with a Borrelia-specific monoclonal antibody were observed microscopically in the coxal fluid and salivary glands from one tick. These data confirm the presence of a novel species of relapsing fever spirochete in bat ticks and the potential for new enzootic foci for endemic relapsing fever that warrants further investigation. The name Borrelia johnsonii is proposed for this novel spirochete in honor of Dr. Russell C. Johnson

    Electrophysiological deficits in the retina of the DBA/2J mouse

    No full text
    The DBA/2J (D2J) is a genetic mouse model for glaucomatous neurodegeneration because the animals develop anatomical and functional retinal deficits that partially can be correlated with elevated intraocular pressure (IOP). The IOP starts to increase at an age of about 6 months as a result of morphological changes within the anterior eye segment, e.g., pigment dispersion and iris synechiae. The purpose of the present study was to investigate how ERG responses change in individuals at different ages in D2J mice and to compare these changes with normal aging effects in pigmented C57/B6 (B6) mice. IOP was measured in awake, non-sedated D2J and B6 mice with a rebound tonometer. At ages between 2?3 and 10 months, scotopic flash ERGs were measured five times with about 2 months? intervals. In addition, light adapted flicker ERGs were recorded. Our data show that the D2J shows lower flicker ERG responses than the B6 mice already at an age of 2?3 months. Dark adapted flash ERG responses are not decreased at this age. In both mouse strains the ERG responses decrease as a function of age, but there is a stronger decrease in the D2J mice. The data of flicker ERGs suggest the presence of early functional deficits in the D2J retina that possibly have a post-receptoral origin. The scotopic flash ERG reveals a functional deficit that occurs at a later stage and that possibly is IOP dependent. But, the deficits appear at an age at which the IOP is still lower than in the B6 mouse, indicating that other factors play an additional role
    corecore