42 research outputs found

    Neutron-19C scattering: Emergence of universal properties in a finite range potential

    Get PDF
    AbstractThe low-energy properties of the elastic s-wave scattering for the n-19C are studied near the critical condition for the occurrence of an excited Efimov state in n–n-18C. It is established to which extent the universal scaling laws, strictly valid in the zero-range limit, survive when finite range potentials are considered. By fixing the two-neutrons separation energy in 20C with available experimental data, it is studied the scaling of the real (ή0R) and imaginary parts of the s-wave phase-shift with the variation of the n-18C binding energy. We obtain some universal characteristics given by the pole-position of kcot⁡(ή0R) and effective-range parameters. By increasing the n-18C binding energy, it was verified that the excited state of 20C goes to a virtual state, resembling the neutron–deuteron behavior in the triton. It is confirmed that the analytical structure of the unitary cut is not affected by the range of the potential or mass asymmetry of the three-body system

    Effect of anharmonicities in the critical number of trapped condensed atoms with attractive two-body interaction

    Full text link
    We determine the quantitative effect, in the maximum number of particles and other static observables, due to small anharmonic terms added to the confining potential of an atomic condensed system with negative two-body interaction. As an example of how a cubic or quartic anharmonic term can affect the maximum number of particles, we consider the trap parameters and the results given by Roberts et al. [Phys. Rev. Lett. 86, 4211 (2001)]. However, this study can be easily transferred to other trap geometries to estimate anharmonic effects.Comment: Total of 5 pages, 3 figures and 1 table. To appear in Phys. Rev.

    Universality in Four-Boson Systems

    Full text link
    We report recent advances on the study of universal weakly bound four-boson states from the solutions of the Faddeev-Yakubovsky equations with zero-range two-body interactions. In particular, we present the correlation between the energies of successive tetramers between two neighbor Efimov trimers and compare it to recent finite range potential model calculations. We provide further results on the large momentum structure of the tetramer wave function, where the four-body scale, introduced in the regularization procedure of the bound state equations in momentum space, is clearly manifested. The results we are presenting confirm a previous conjecture on a four-body scaling behavior, which is independent of the three-body one. We show that the correlation between the positions of two successive resonant four-boson recombination peaks are consistent with recent data, as well as with recent calculations close to the unitary limit. Systematic deviations suggest the relevance of range corrections.Comment: Accepted for publication in special issue of Few-Body Systems devoted to the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems, October 2011, Erice, Sicily, Ital

    Eco-friendly aqueous core surface-modified nanocapsules

    No full text
    In this work, positively charged nanocapsules have been developed for potential ocular delivery exploiting the deposition of PLA onto the droplet surface of a W/O nanoemulsion prepared by the reversed procedure of the PIT method. PLA in combination with different amounts of various oils and surfactants have been studied in order to select the best formulation for polymeric nanocapsule preparation. The traditional visual observation together with the TurbiscanÂź technology were exploited in order to identify the best combination of polymer/oil for nanocapsule preparation. Two different primary surfactants (SpanÂź 60 and SpanÂź 80) have been tested to select their influence on the field of existence of the nanoemulsion by the construction of the pseudoternary phase diagrams. Cationic hybrid NC have been prepared by the addition of a coating layer of DDAB. The physico-chemical and morphological properties of all the prepared nanocapsules have been evaluated and compared by PCS, DSC and AFM. Therefore, positively charged nanocapsules can be easily prepared by a simple eco-friendly technique that exploits biocompatible materials avoiding a large input of mechanical energy as a potential ocular delivery systems for hydrophilic compounds or gene materials

    Erratum to “Neutron–19C scattering: Emergence of universal properties in a finite range potential” [Phys. Lett. B 764 (2017) 196]

    No full text
    Numerical results for the function (1−EK/E0)kcot⁡ή0R, as given in Phys. Lett. B 764 (2017) 196, are revised. Fig. 2 and Tables 2 and 3 should be replaced by the following corresponding figure and tables. The conclusions of the original paper remain unchanged. Keywords: Halo nuclei, Scattering theory, Efimov physics, Faddeev equatio
    corecore