303 research outputs found

    Process for the modification of polymers, in particular polymer nanoparticles

    No full text
    The present invention relates to a highly efficient and ultra fast process for the photo-initiated preparation of polymers by polymerization using photoinitiators comprising a phosphorous oxide or -sulfide group and modification of said polymers. In particular the invention relates to an ultra fast process for the photo-initiated preparation of latices comprising polymer nanoparticles by heterophase polymerization using photoinitiators comprising a phosphorous oxide or -sulfide group and their modification. In another aspect, the invention relates to polymers and polymer nanoparticles obtainable by said process

    Scaling and intermittency of brain events as a manifestation of consciousness

    Get PDF
    We discuss the critical brain hypothesis and its relationship with intermittent renewal processes displaying power-law decay in the distribution of waiting times between two consecutive renewal events. In particular, studies on complex systems in a "critical" condition show that macroscopic variables, integrating the activities of many individual functional units, undergo fluctuations with an intermittent serial structure characterized by avalanches with inverse-power-law (scale-free) distribution densities of sizes and inter-event times. This condition, which is denoted as "fractal intermittency", was found in the electroencephalograms of subjects observed during a resting state wake condition. It remained unsolved whether fractal intermittency correlates with the stream of consciousness or with a non-task-driven default mode activity, also present in non-conscious states, like deep sleep. After reviewing a method of scaling analysis of intermittent systems based of event-driven random walks, we show that during deep sleep fractal intermittency breaks down, and re-establishes during REM (Rapid Eye Movement) sleep, with essentially the same anomalous scaling of the pre-sleep wake condition. From the comparison of the pre-sleep wake, deep sleep and REM conditions we argue that the scaling features of intermittent brain events are related to the level of consciousness and, consequently, could be exploited as a possible indicator of consciousness in clinical applications

    The Lepidopteran endoribonuclease-U domain protein P102 displays dramatically reduced enzymatic activity and forms functional amyloids

    Get PDF
    Hemocytes of Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae produce a protein, P102, with a putative endoribonuclease-U domain. In previous works we have shown that P102 is involved in Lepidopteran immune response by forming amyloid fibrils, which catalyze and localize melanin deposition around non-self intruders during encapsulation, preventing harmful systemic spreading. Here we demonstrate that P102 belongs to a new class of proteins that, at least in Lepidoptera, has a diminished endoribonuclease-U activity probably due to the lack of two out of five catalytically essential residues. We show that the P102 homolog from Trichoplusia ni (Lepidoptera, Noctuidae) displays catalytic site residues identical to P102, a residual endoribonuclease-U activity and the ability to form functional amyloids. On the basis of these results as well as sequence and structural analyses, we hypothesize that all the Lepidoptera endoribonuclease-U orthologs with catalytic site residues identical to P102 form a subfamily with similar function

    Tracking the invasive hornet Vespa velutina in complex environments by means of a harmonic radar

    Get PDF
    An innovative scanning harmonic radar has been recently developed for tracking insects in complex landscapes. This movable technology has been tested on an invasive hornet species (Vespa velutina) for detecting the position of their nests in the environment, in the framework of an early detection strategy. The new model of harmonic radar proved to be effective in tracking hornets either in open landscapes, hilly environments and areas characterised by the presence of more obstacles, such as woodlands and urban areas. Hornets were effectively tracked in complex landscapes for a mean tracking length of 96 ± 62 m with maximum values of ~ 300 m. The effectiveness of locating nests was 75% in new invasive outbreaks and 60% in highly density colonised areas. Furthermore, this technology could provide information on several aspects of insect’s ecology and biology. In this case, new insights were obtained about the mean foraging range of V. velutina (395 ± 208 m with a maximum value of 786 m) and flying features (ground speed), which was 6.66 ± 2.31 m s−1 for foraging individuals (hornets that are not carrying prey’s pellet) and 4.06 ± 1.34 m s−1 for homing individuals

    Adaptive filtering for removing nonstationary physiological noise from resting state fMRI BOLD signals

    Get PDF
    fMRI is used to investigate brain functional connectivity after removing nonneural components by General Linear Model (GLM) approach with a reference ventricle-derived signal as covariate. Ventricle signals are related to low-frequency modulations of cardiac and respiratory rhythms, which are nonstationary activities. Herein, we employed an adaptive filtering approach to improve removing physiological noise from BOLD signals. Comparisons between filtering approaches were performed by evaluating the amount of removed signal variance and the connectivity between homologous contralateral regions of interest (ROIs). The global connectivity between ROIs was estimated with a generalized correlation named RV coefficient. The mean ROI decrease of variance was -52% and -11%, for adaptive filtering and GLM, respectively. Adaptive filtering led to higher connectivity between grey matter ROIs than that obtained with GLM. Thus, adaptive filtering is a feasible method for removing the physiological noise in the low frequency band and to highlight resting state functional networks

    Continuous flow processes for photoconjugation of high-molecular chemical entities

    No full text
    The invention relates to a continuous flow process for the photoconjugation of chemical entities selected from the group comprising carbohydrates, including mono-, oligo- and polysaccharides, amino acids, peptides and proteins, unbranched and branched oligomers and polymers, including dendrimers, which process comprises at least the following steps: a) providing a mixture of the reactants dissolved in an aqueous or organic solvent; b) passing said mixture through a continuous flow reactor and concomitantly irradiating the mixture with light in order to initiate and perform the photoreaction. In preferred embodiments, the photoconjugation is a thiol-ene conjugation or a [2+2] cycloaddition. A further aspect of the invention relates to the conjugates obtainable by this continuous flow process, in particular dendronized polymers such as carbohydrate-dendronized polymers

    Mind-body relationships in elite apnea divers during breath holding: a study of autonomic responses to acute hypoxemia

    Get PDF
    The mental control of ventilation with all associated phenomena, from relaxation to modulation of emotions, from cardiovascular to metabolic adaptations, constitutes a psychophysiological condition characterizing voluntary breath-holding (BH). BH induces several autonomic responses, involving both autonomic cardiovascular and cutaneous pathways, whose characterization is the main aim of this study. Electrocardiogram and skin conductance (SC) recordings were collected from 14 elite divers during three conditions: free breathing (FB), normoxic phase of BH (NPBH) and hypoxic phase of BH (HPBH). Thus, we compared a set of features describing signal dynamics between the three experimental conditions: from heart rate variability (HRV) features (in time and frequency-domains and by using nonlinear methods) to rate and shape of spontaneous SC responses (SCRs). The main result of the study rises by applying a Factor Analysis to the subset of features significantly changed in the two BH phases. Indeed, the Factor Analysis allowed to uncover the structure of latent factors which modeled the autonomic response: a factor describing the autonomic balance (AB), one the information increase rate (IIR), and a latter the central nervous system driver (CNSD). The BH did not disrupt the FB factorial structure, and only few features moved among factors. Factor Analysis indicates that during BH (1) only the SC described the emotional output, (2) the sympathetic tone on heart did not change, (3) the dynamics of interbeats intervals showed an increase of long-range correlation that anticipates the HPBH, followed by a drop to a random behavior. In conclusion, data show that the autonomic control on heart rate and SC are differentially modulated during BH, which could be related to a more pronounced effect on emotional control induced by the mental training to BH

    Mind-body relationships in elite apnea divers during breath holding: a study of autonomic responses to acute hypoxemia

    Get PDF
    The mental control of ventilation with all associated phenomena, from relaxation to modulation of emotions, from cardiovascular to metabolic adaptations, constitutes a psychophysiological condition characterizing voluntary breath-holding (BH). BH induces several autonomic responses, involving both autonomic cardiovascular and cutaneous pathways, whose characterization is the main aim of this study. Electrocardiogram and skin conductance (SC) recordings were collected from 14 elite divers during three conditions: free breathing (FB), normoxic phase of BH (NPBH) and hypoxic phase of BH (HPBH). Thus, we compared a set of features describing signal dynamics between the three experimental conditions: from heart rate variability (HRV) features (in time and frequency-domains and by using nonlinear methods) to rate and shape of spontaneous SC responses (SCRs). The main result of the study rises by applying a Factor Analysis to the subset of features significantly changed in the two BH phases. Indeed, the Factor Analysis allowed to uncover the structure of latent factors which modeled the autonomic response: a factor describing the autonomic balance (AB), one the information increase rate (IIR), and a latter the central nervous system driver (CNSD). The BH did not disrupt the FB factorial structure, and only few features moved among factors. Factor Analysis indicates that during BH (1) only the SC described the emotional output, (2) the sympathetic tone on heart did not change, (3) the dynamics of interbeats intervals showed an increase of long-range correlation that anticipates the HPBH, followed by a drop to a random behavior. In conclusion, data show that the autonomic control on heart rate and SC are differentially modulated during BH, which could be related to a more pronounced effect on emotional control induced by the mental training to BH

    Gastric normal adjacent mucosa versus healthy and cancer tissues: Distinctive transcriptomic profiles and biological features

    Get PDF
    Gastric cancer (GC) is a leading cause of cancer-related deaths in the world. Molecular heterogeneity is a major determinant for the clinical outcomes and an exhaustive tumor classification is currently missing. Histologically normal tissue adjacent to the tumor (NAT) is commonly used as a control in cancer studies, nevertheless a recently published paper described the unique characteristics of the NAT in several tumor types. Little is known about the global gene expression profile of gastric NAT (gNAT) which could be an effective tool for a more realistic definition of GC molecular signature. Here, we integrated data of 512 samples from the Genotype- Tissue Expression project (GETx) and The Cancer Genome Atlas (TCGA) to analyze the transcriptome of healthy gastric tissues, gNAT, and GC samples. We validated TCGA-GETx data mining through inHouse gNAT and GC expression dataset. Differential gene expression together with pathway enrichment analyses, indeed, led to different results when using the gNAT or the healthy tissue as control. Based on our analyses, gNAT showed a peculiar gene signature and biological features, like the estrogen receptor pathways activation, suggesting a molecular behavior partially different from both healthy and GC tissues. Therefore, using gNAT as healthy control tissue in the characterization of tumor associated biological processes and pathways could lead to suboptimal results
    • 

    corecore