9 research outputs found
Mean arterial pressure and vasopressor load after out-of-hospital cardiac arrest : Associations with one-year neurologic outcome
The aim of the study: There are limited data on blood pressure targets and vasopressor use following cardiac arrest. We hypothesized that hypotension and high vasopressor load are associated with poor neurological outcome following out-of-hospital cardiac arrest (OHCA). Methods: We included 412 patients with OHCA included in FINNRESUSCI study conducted between 2010 and 2011. Hemodynamic data and vasopressor doses were collected electronically in one, two or five minute intervals. We evaluated thresholds for time-weighted (TW) mean arterial pressure (MAP) and outcome by receiver operating characteristic (ROC) curve analysis, and used multivariable analysis adjusting for co-morbidities, factors at resuscitation, an illness severity score, TW MAP and total vasopressor load (VL) to test associations with one-year neurologic outcome, dichotomized into either good (1-2) or poor (3-5) according to the cerebral performance category scale. Results: Of 412 patients, 169 patients had good and 243 patients had poor one-year outcomes. The lowest MAP during the first six hours was 58 (inter-quartile range [IQR] 56-61) mmHg in those with a poor outcome and 61 (59-63) mmHg in those with a good outcome (p <0.01), and lowest MAP was independently associated with poor outcome (OR 1.02 per mmHg, 95% CI 1.00-1.04, p = 0.03). During the first 48h the median (IQR) of the 1W mean MAP was 80 (78-82) mmHg in patients with poor, and 82 (81-83) mmHg in those with good outcomes (p=0.03) but in multivariable analysis TWA MAP was not associated with outcome. Vasopressor load did not predict one-year neurologic outcome. Conclusions: Hypotension occurring during the first six hours after cardiac arrest is an independent predictor of poor one-year neurologic outcome. High vasopressor load was not associated with poor outcome and further randomized trials are needed to define optimal MAP targets in OHCA patients. (C) 2016 Elsevier Ireland Ltd. All rights reserved.Peer reviewe
Association of deranged cerebrovascular reactivity with brain injury following cardiac arrest : a post-hoc analysis of the COMACARE trial
Background: Impaired cerebrovascular reactivity (CVR) is one feature of post cardiac arrest encephalopathy. We studied the incidence and features of CVR by near infrared spectroscopy (NIRS) and associations with outcome and biomarkers of brain injury. Methods: A post-hoc analysis of 120 comatose OHCA patients continuously monitored with NIRS and randomised to low- or high-normal oxygen, carbon dioxide and mean arterial blood pressure (MAP) targets for 48 h. The tissue oximetry index-(TOx) generated by the moving correlation coefficient between cerebral tissue oxygenation measured by NIRS and MAP was used as a dynamic index of CVR with-TOx > 0 indicating impaired reactivity and TOx > 0.3 used to delineate the lower and upper MAP bounds for disrupted CVR. TOx was analysed in the 0-12, 12-24, 24-48 h timeperiods and integrated over 0-48 h. The primary outcome was the association between TOx and six-month functional outcome dichotomised by the cerebral performance category (CPC1-2 good vs. 3-5 poor). Secondary outcomes included associations with MAP bounds for CVR and biomarkers of brain injury. Results: In 108 patients with sufficient data to calculate TOx, 76 patients (70%) had impaired CVR and among these, chronic hypertension was more common (58% vs. 31%, p = 0.002). Integrated TOx for 0-48 h was higher in patients with poor outcome than in patients with good outcome (0.89 95% CI [- 1.17 to 2.94] vs. - 2.71 95% CI [- 4.16 to - 1.26], p = 0.05). Patients with poor outcomes had a decreased upper MAP bound of CVR over time (p = 0.001), including the high-normal oxygen (p = 0.002), carbon dioxide (p = 0.012) and MAP (p = 0.001) groups. The MAP range of maintained CVR was narrower in all time intervals and intervention groups (p < 0.05). NfL concentrations were higher in patients with impaired CVR compared to those with intact CVR (43 IQR [15-650] vs 20 IQR [13-199] pg/ml, p = 0.042). Conclusion: Impaired CVR over 48 h was more common in patients with chronic hypertension and associated with poor outcome. Decreased upper MAP bound and a narrower MAP range for maintained CVR were associated with poor outcome and more severe brain injury assessed with NfL.Peer reviewe
The effect of higher or lower mean arterial pressure on kidney function after cardiac arrest : a post hoc analysis of the COMACARE and NEUROPROTECT trials
Background: We aimed to study the incidence of acute kidney injury (AKI) in out-of-hospital cardiac arrest (OHCA) patients treated according to low-normal or high-normal mean arterial pressure (MAP) targets. Methods: A post hoc analysis of the COMACARE (NCT02698917) and Neuroprotect (NCT02541591) trials that randomized patients to lower or higher targets for the first 36 h of intensive care. Kidney function was defined using the Kidney Disease Improving Global Outcome (KDIGO) classification. We used Cox regression analysis to identify factors associated with AKI after OHCA. Results: A total of 227 patients were included: 115 in the high-normal MAP group and 112 in the low-normal MAP group. Eighty-six (38%) patients developed AKI during the first five days; 40 in the high-normal MAP group and 46 in the low-normal MAP group (p = 0.51). The median creatinine and daily urine output were 85 μmol/l and 1730 mL/day in the high-normal MAP group and 87 μmol/l and 1560 mL/day in the low-normal MAP group. In a Cox regression model, independent AKI predictors were no bystander cardiopulmonary resuscitation (p < 0.01), non-shockable rhythm (p < 0.01), chronic hypertension (p = 0.03), and time to the return of spontaneous circulation (p < 0.01), whereas MAP target was not an independent predictor (p = 0.29). Conclusion: Any AKI occurred in four out of ten OHCA patients. We found no difference in the incidence of AKI between the patients treated with lower and those treated with higher MAP after CA. Higher age, non-shockable initial rhythm, and longer time to ROSC were associated with shorter time to AKI. Clinical trial registration: COMACARE (NCT02698917), NEUROPROTECT (NCT02541591).Peer reviewe