8 research outputs found

    Effects of Inactivated \u3ci\u3eMycobacterium bovis\u3c/i\u3e Vaccination on Molokai-Origin Wild Pigs Experimentally Infected with Virulent \u3ci\u3eM. bovis\u3c/i\u3e

    Get PDF
    The wild pig population on Molokai, Hawaii, USA is a possible reservoir for bovine tuberculosis, caused by Mycobacterium bovis, and has been implicated in decades past as the source of disease for the island’s domestic cattle. Heat-inactivated vaccines have been effective for reducing disease prevalence in wild boar in Spain and could prove useful for managing M. bovis in Molokai wild pigs. We designed an experiment to test this vaccine in wild pigs of Molokai genetics. Fifteen 3–4-month-old pigs were orally administered 106–107 colony forming units (cfu) of heat-inactivated M. bovis (Vaccinates; n = 8; 0.2 mL) or phosphate buffered saline (Controls; n = 7; 0.2 mL). Each dose was administered in a 0.5 mL tube embedded in a fruit candy/cracked corn mix. Boosters were given seven weeks post-prime in the same manner and dose. Nineteen weeks post-prime, pigs were orally challenged with 1 × 106 cfu of virulent M. bovis. Twelve weeks post-challenge, pigs were euthanized and necropsied, at which time 23 different tissues from the head, thorax, and abdomen were collected and examined. Each tissue was assigned a lesion score. Ordinal lesion score data were analyzed using non-zarametric Wilcoxon Signed Rank test. Effect size was calculated using Cohen’s d. Four of eight Vaccinates and four of seven Controls had gross and microscopic lesions, as well as culture-positive tissues. Vaccinates had statistically lower lesion scores than Controls in the following areas: gross thoracic lesion scores (p = 0.013 Cohen’s d = 0.33) and microscopic thoracic lesion scores (p = 0.002, Cohen’s d = 0.39). There were no differences in head lesion scores alone, both gross and microscopic, nor were there differences when comparing combined gross and microscopic head and thoracic lesion scores. These results are indicative that this vaccination protocol affords a modest degree of infection containment with this vaccine in Molokai wild pigs

    Promiscuous \u3cem\u3eCoxiella burnetii\u3c/em\u3e CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine

    Get PDF
    Coxiella burnetii, the causative agent of Q fever, is a Gram-negative intracellular bacterium transmitted via aerosol. Regulatory approval of the Australian whole-cell vaccine Q-VAX® in the US and Europe is hindered by reactogenicity in previously exposed individuals. The aim of this study was to identify and rationally select C. burnetii epitopes for design of a safe, effective, and less reactogenic T-cell targeted human Q fever vaccine. Immunoinformatic methods were used to predict 65 HLA class I epitopes and 50 promiscuous HLA class II C. burnetii epitope clusters, which are conserved across strains of C. burnetii. HLA binding assays confirmed 89% of class I and 75% of class II predictions, and 11 HLA class II epitopes elicited IFNγ responses following heterologous DNA/DNA/peptide/peptide prime-boost immunizations of HLA-DR3 transgenic mice. Human immune responses to the predicted epitopes were characterized in individuals naturally exposed to C. burnetii during the 2007–2010 Dutch Q fever outbreak. Subjects were divided into three groups: controls with no immunological evidence of previous infection and individuals with responses to heat-killed C. burnetii in a whole blood IFNγ release assay (IGRA) who remained asymptomatic or who experienced clinical Q fever during the outbreak. Recall responses to C. burnetii epitopes were assessed by cultured IFNγ ELISpot. While HLA class I epitope responses were sparse in this cohort, we identified 21 HLA class II epitopes that recalled T-cell IFNγ responses in 10–28% of IGRA+ subjects. IGRA+ individuals with past asymptomatic and symptomatic C. burnetii infection showed a comparable response pattern and cumulative peptide response which correlated with IGRA responses. None of the peptides elicited reactogenicity in a C. burnetii exposure-primed guinea pig model. These data demonstrate that a substantial proportion of immunoinformatically identified HLA class II epitopes show long-lived immunoreactivity in naturally infected individuals, making them desirable candidates for a novel human multi-epitope Q fever vaccine

    Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine

    Get PDF
    Coxiella burnetii, the causative agent of Q fever, is a Gram-negative intracellular bacterium transmitted via aerosol. Regulatory approval of the Australian whole-cell vaccine Q-VAX® in the US and Europe is hindered by reactogenicity in previously exposed individuals. The aim of this study was to identify and rationally select C. burnetii epitopes for design of a safe, effective, and less reactogenic T-cell targeted human Q fever vaccine. Immunoinformatic methods were used to predict 65 HLA class I epitopes and 50 promiscuous HLA class II C. burnetii epitope clusters, which are conserved across strains of C. burnetii. HLA binding assays confirmed 89% of class I and 75% of class II predictions, and 11 HLA class II epitopes elicited IFNγ responses following heterologous DNA/DNA/peptide/peptide prime-boost immunizations of HLA-DR3 transgenic mice. Human immune responses to the predicted epitopes were characterized in individuals naturally exposed to C. burnetii during the 2007–2010 Dutch Q fever outbreak. Subjects were divided into three groups: controls with no immunological evidence of previous infection and individuals with responses to heat-killed C. burnetii in a whole blood IFNγ release assay (IGRA) who remained asymptomatic or who experienced clinical Q fever during the outbreak. Recall responses to C. burnetii epitopes were assessed by cultured IFNγ ELISpot. While HLA class I epitope responses were sparse in this cohort, we identified 21 HLA class II epitopes that recalled T-cell IFNγ responses in 10–28% of IGRA+ subjects. IGRA+ individuals with past asymptomatic and symptomatic C. burnetii infection showed a comparable response pattern and cumulative peptide response which correlated with IGRA responses. None of the peptides elicited reactogenicity in a C. burnetii exposure-primed guinea pig model. These data demonstrate that a substantial proportion of immunoinformatically identified HLA class II epitopes show long-lived immunoreactivity in naturally infected individuals, making them desirable candidates for a novel human multi-epitope Q fever vaccine

    Effects of Inactivated \u3ci\u3eMycobacterium bovis\u3c/i\u3e Vaccination on Molokai-Origin Wild Pigs Experimentally Infected with Virulent \u3ci\u3eM. bovis\u3c/i\u3e

    Get PDF
    The wild pig population on Molokai, Hawaii, USA is a possible reservoir for bovine tuberculosis, caused by Mycobacterium bovis, and has been implicated in decades past as the source of disease for the island’s domestic cattle. Heat-inactivated vaccines have been effective for reducing disease prevalence in wild boar in Spain and could prove useful for managing M. bovis in Molokai wild pigs. We designed an experiment to test this vaccine in wild pigs of Molokai genetics. Fifteen 3–4-month-old pigs were orally administered 106–107 colony forming units (cfu) of heat-inactivated M. bovis (Vaccinates; n = 8; 0.2 mL) or phosphate buffered saline (Controls; n = 7; 0.2 mL). Each dose was administered in a 0.5 mL tube embedded in a fruit candy/cracked corn mix. Boosters were given seven weeks post-prime in the same manner and dose. Nineteen weeks post-prime, pigs were orally challenged with 1 × 106 cfu of virulent M. bovis. Twelve weeks post-challenge, pigs were euthanized and necropsied, at which time 23 different tissues from the head, thorax, and abdomen were collected and examined. Each tissue was assigned a lesion score. Ordinal lesion score data were analyzed using non-zarametric Wilcoxon Signed Rank test. Effect size was calculated using Cohen’s d. Four of eight Vaccinates and four of seven Controls had gross and microscopic lesions, as well as culture-positive tissues. Vaccinates had statistically lower lesion scores than Controls in the following areas: gross thoracic lesion scores (p = 0.013 Cohen’s d = 0.33) and microscopic thoracic lesion scores (p = 0.002, Cohen’s d = 0.39). There were no differences in head lesion scores alone, both gross and microscopic, nor were there differences when comparing combined gross and microscopic head and thoracic lesion scores. These results are indicative that this vaccination protocol affords a modest degree of infection containment with this vaccine in Molokai wild pigs

    IMMUNOLOGICAL AND CLINICAL RESPONSE OF COYOTES (CANIS LATRANS) TO EXPERIMENTAL INOCULATION WITH YERSINIA PESTIS

    Get PDF
    Multiple publications have reported the use of coyotes (Canis latrans) in animalbased surveillance efforts for the detection of Yersinia pestis. Coyotes are likely exposed via flea bite or oral routes and are presumed to be resistant to the development of clinical disease. These historic data have only been useful for the evaluation of the geographic distribution of Y. pestis in the landscape. Because the canid immunologic response to Y. pestis has not been thoroughly characterized, we conducted experimental inoculation of captive-reared, juvenile coyotes (n58) with Y. pestis CO92 via oral or intradermal routes. We measured the humoral response to Y. pestis fraction 1 capsular protein (anti-F1) and found a significant difference between inoculation groups in magnitude and duration of antibody production. The anti-F1 titers in animals exposed intradermally peaked at day 10 postinoculation (PI; range51:32 to 1:128) with titers remaining stable at 1:32 through week 12. In contrast, orally inoculated animals developed higher titers (range51:256 to 1:1,024) that remained stable at 1:256 to 1:512 through week 6. No clinical signs of disease were observed, and minimal changes were noted in body temperature, white blood cell counts, and acute phase proteins during the 7 days PI. Gross pathology was unremarkable, and minimal changes were noted in histopathology at days 3 and 7 PI. Rechallenge at 14 wk PI via similar dosage and routes resulted in marked differences in antibody response between groups. Animals in the orally inoculated group produced a striking increase in anti-F1 titers (up to 1:4,096) within 3 days, whereas there was minimal to no increase in antibody response in the intradermal group. Information gathered from this experimental trial may provide additional insight into the spatial and temporal evaluation of coyote plague serology

    Standardized guinea pig model for Q fever vaccine reactogenicity.

    No full text
    Historically, vaccination with Coxiella burnetii whole cell vaccines has induced hypersensitivity reactions in humans and animals that have had prior exposure to the pathogen as a result of infection or vaccination. Intradermal skin testing is routinely used to evaluate exposure in humans, and guinea pig hypersensitivity models have been developed to characterize the potential for reactogenicity in vaccine candidates. Here we describe a refinement of the guinea pig model using an alternate vaccine for positive controls. An initial comparative study used viable C. burnetii to compare the routes of sensitizing exposure of guinea pigs (intranasal vs intraperitoneal), evaluation of two time points for antigen challenge (21 and 42 days) and an assessment of two routes (intradermal and subcutaneous) of challenge using the ruminant vaccine Coxevac as the antigenic control. Animals sensitized by intraperitoneal exposure exhibited slightly larger gross reactions than did those sensitized by intranasal exposure, and reactions were more pronounced when skin challenge was performed at 42 days compared to 21 days post-sensitization. The intradermal route proved to be the optimal route of reactogenicity challenge. Histopathological changes at injection sites were similar to those previously reported and a scoring system was developed to compare reactions between groups receiving vaccine by intradermal versus subcutaneous routes. Based on the comparative study, a standardized protocol for assessment of vaccine reactogenicity in intranasally-sensitized animals was tested in a larger confirmatory study. Results suggest that screens utilizing a group size of n = 3 would achieve 90% power for detecting exposure-related reactogenic responses of the magnitude induced by Coxevac using either of two outcome measures

    Effects of inactivated Mycobacterium bovis vaccination on molokai-origin wild pigs experimentally infected with virulent M. bovis

    No full text
    This article belongs to the Special Issue Tuberculosis Epidemiology and Control in Multi-Host Systems.The wild pig population on Molokai, Hawaii, USA is a possible reservoir for bovine tuberculosis, caused by Mycobacterium bovis, and has been implicated in decades past as the source of disease for the island’s domestic cattle. Heat-inactivated vaccines have been effective for reducing disease prevalence in wild boar in Spain and could prove useful for managing M. bovis in Molokai wild pigs. We designed an experiment to test this vaccine in wild pigs of Molokai genetics. Fifteen 3–4-month-old pigs were orally administered 106–107 colony forming units (cfu) of heat-inactivated M. bovis (Vaccinates; n = 8; 0.2 mL) or phosphate buffered saline (Controls; n = 7; 0.2 mL). Each dose was administered in a 0.5 mL tube embedded in a fruit candy/cracked corn mix. Boosters were given seven weeks post-prime in the same manner and dose. Nineteen weeks post-prime, pigs were orally challenged with 1 × 106 cfu of virulent M. bovis. Twelve weeks post-challenge, pigs were euthanized and necropsied, at which time 23 different tissues from the head, thorax, and abdomen were collected and examined. Each tissue was assigned a lesion score. Ordinal lesion score data were analyzed using non-parametric Wilcoxon Signed Rank test. Effect size was calculated using Cohen’s d. Four of eight Vaccinates and four of seven Controls had gross and microscopic lesions, as well as culture-positive tissues. Vaccinates had statistically lower lesion scores than Controls in the following areas: gross thoracic lesion scores (p = 0.013 Cohen’s d = 0.33) and microscopic thoracic lesion scores (p = 0.002, Cohen’s d = 0.39). There were no differences in head lesion scores alone, both gross and microscopic, nor were there differences when comparing combined gross and microscopic head and thoracic lesion scores. These results are indicative that this vaccination protocol affords a modest degree of infection containment with this vaccine in Molokai wild pigs.This research was funded by United States Department of Agriculture, National Feral Swine Initiative.Peer reviewe
    corecore