767 research outputs found

    Letter to the editor : management of patients with Ebola virus disease in Europe : high-level isolation units should have a key role

    Get PDF
    In the past, the rare imported cases of Ebola and Marburg in western European countries and the United States were managed in high-level isolation units (HLIUs). Subsequently, reported experiences indicate that strict contact-droplet isolation is enough for preventing transmission. From this hypothesis, the idea may derive that HLIUs are not strictly necessary for the management of EVD patients, who may be safely managed in non-specialised hospitals, as suggested by some international recommendations elaborated during the current Ebola outbreak in West Africa. Even if we concur that strict contact-droplet isolation is enough to prevent transmission during routine care, we believe that HLIUs should have a key role in EVD containment in countries where such facilities are available. An HLIU is a healthcare facility specifically designed to provide safe, secure, high-quality, and appropriate care, with optimal infection containment and infection prevention and control procedures, for a single patient or a small number of patients who have, or who may have, a highly infectious disease.peer-reviewe

    COVID-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection

    Get PDF
    Background: Epidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information. Methods: We investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV-host interactome was carried out in order to provide a theoretic host-pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein-protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. Results: Although the amino acid sequences of the S-glycoprotein were found to be different between the various HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and chemokines. Conclusions: In this paper, we developed a network-based model with the aim to define molecular aspects of pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided pharmaceutical and diagnostic research with the prospect to identify potential new biological targets

    Cytotoxic lymphocytes in B-cell chronic lymphocytic leukemia

    Get PDF
    The occurrence of cytotoxic lymphocyte subpopulations (i.e., CD 16+, CD57+ and cytotoxic CD 8+) was studied in the peripheral blood of 18 B-cell chronic lymphocytic leukemia (B-CLL) patients. The absolute numbers of CD 57+, CD 16+ and cytotoxic CD 8+ lymphocytes were increased in the peripheral blood of untreated patients as compared with healthy donors, suggesting a causal relation with the accumulation of malignant B-cells. For 5 B-CLL patients and 5 hematological normal donors, the lymphocyte subpopulations in peripheral blood, lymph nodes and bone marrow were determined. A significant immune response was observed in the lymph nodes of the patients, as reflected by the CD 3+ lymphocytes, which were 1.7–27 times larger in the patients lymph nodes than in their peripheral blood and bone marrow. In contrast, with peripheral blood this was mainly caused by an increase in CD 4+ lymphocytes. The CD 57 lymphocytes in the lymph nodes of the patients had abnormal orthogonal light-scattering signals and an abnormal density of CD 57+ receptors in comparison with their peripheral blood CD 57+ lymphocytes or the CD57+ lymphocytes in the peripheral blood, bone marrow and tonsils of the hematological normal donors. This study shows that although a significant increase of cytotoxic lymphocytes in the peripheral blood of B-CLL patients is observed, the actual distributions of the non-malignant lymphocytes can be quite different at the actual tumor sites, i.e., bone marrow and lymph node

    The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors

    Get PDF
    The maturation of coronavirus SARS-CoV-2, which is the etiological agent at the origin of the COVID-19 pandemic, requires a main protease Mpro to cleave the virus-encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the Mpro monomer-dimer equilibrium dissociation constant. Since the functional unit of Mpro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad-spectrum antiviral drug leads. In the present study, we exploit Small Angle X-ray Scattering (SAXS) to investigate the structural features of SARS-CoV-2 Mpro in solution as a function of protein concentration and temperature. A detailed thermodynamic picture of the monomer-dimer equilibrium is derived, together with the temperature-dependent value of the dissociation constant. SAXS is also used to study how the Mpro dissociation process is affected by small inhibitors selected by virtual screening. We find that these inhibitors affect dimerization and enzymatic activity to a different extent and sometimes in an opposite way, likely due to the different molecular mechanisms underlying the two processes. The Mpro residues that emerge as key to optimize both dissociation and enzymatic activity inhibition are discussed

    Detection of Viral RNA in Tissues following Plasma Clearance from an Ebola Virus Infected Patient

    Get PDF
    An unprecedented Ebola virus (EBOV) epidemic occurred in 2013–2016 in West Africa. Over this time the epidemic exponentially grew and moved to Europe and North America, with several imported cases and many Health Care Workers (HCW) infected. Better understanding of EBOV infection patterns in different body compartments is mandatory to develop new countermeasures, as well as to fully comprehend the pathways of human-to-human transmission. We have longitudinally explored the persistence of EBOV-specific negative sense genomic RNA (neg-RNA) and the presence of positive sense RNA (pos-RNA), including both replication intermediate (antigenomic-RNA) and messenger RNA (mRNA) molecules, in the upper and lower respiratory tract, as compared to plasma, in a HCW infected with EBOV in Sierra Leone, who was hospitalized in the high isolation facility of the National Institute for Infectious Diseases “Lazzaro Spallanzani” (INMI), Rome, Italy. We observed persistence of pos-RNA and neg-RNAs in longitudinally collected specimens of the lower respiratory tract, even after viral clearance from plasma, suggesting possible local replication. The purpose of the present study is to enhance the knowledge on the biological features of EBOV that can contribute to the human-to-human transmissibility and to develop effective intervention strategies. However, further investigation is needed in order to better understand the clinical meaning of viral replication and shedding in the respiratory tract
    corecore