594 research outputs found

    MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells

    Get PDF
    Mir-205 plays an important role in epithelial biogenesis and in mammary gland development but its role in cancer still remains controversial depending on the specific cellular context and target genes. We have previously reported that miR-205-5p is upregulated in breast cancer stem cells targeting ERBB pathway and leading to targeted therapy resistance. Here we show that miR-205-5p regulates tumorigenic properties of breast cancer cells, as well as epithelial to mesenchymal transition. Silencing this miRNA in breast cancer results in reduced tumor growth and metastatic spreading in mouse models. Moreover, we show that miR-205-5p knock-down can be obtained with the use of specific locked nucleic acids oligonucleotides in vivo suggesting a future potential use of this approach in therapy

    The impact of time interval between hepatic resection and liver transplantation on clinical outcome in patients with hepatocellular carcinoma

    Get PDF
    Hepatic resection (HR) for hepatocellular carcinoma (HCC) may require secondary liver transplantation (SLT). However, a previous HR is supposed to worsen post-SLT outcomes. Data of patients treated by SLT between 2000 and 2018 at two tertiary referral centers were analyzed. The primary outcome of the study was to analyze the impact of HR on post-LT complications. A Comprehensive Complication Index ≄ 29.6 was chosen as cutoff. The secondary outcome was HCC-re-lated death by means of competing-risk regression analysis. In the study period, 140 patients were included. Patients were transplanted in a median of 23 months after HR (IQR 14–41). Among all the features analyzed regarding the prior HR, only time interval between HR and SLT (time HR-SLT) was an independent predictor of severe complications after LT (OR = 0.98, p < 0.001). According to fractional polynomial regression, the probability of severe complications increased up to 15 months after HR (43%), then slowly decreased over time (OR = 0.88, p < 0.001). There was no significant association between HCC-related death and time HR-SLT at the multivariable competing risks regression model (SHR, 1.06; 95% CI: 0.69–1.62, p = 0.796). This study showed that time HR-SLT was key in predicting complications after LT, without affecting HCC-related death

    miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance

    Get PDF
    The ErbB tyrosine kinase receptor family has been shown to have an important role in tumorigenesis, and the expression of its receptor members is frequently deregulated in many types of solid tumors. Various drugs targeting these receptors have been approved for cancer treatment. Particularly, in breast cancer, anti-Her2/EGFR molecules represent the standard therapy for Her2-positive malignancies. However, in a number of cases, the tumor relapses or progresses thus suggesting that not all cancer cells have been targeted. One possibility is that a subset of cells capable of regenerating the tumor, such as cancer stem cells (CSCs), may not respond to these therapeutic agents. Accumulating evidences indicate that miR-205-5p is significantly downregulated in breast tumors compared with normal breast tissue and acts as a tumor suppressor directly targeting oncogenes such as Zeb1 and ErbB3. In this study, we report that miR-205-5p is highly expressed in BCSCs and represses directly ERBB2 and indirectly EGFR leading to resistance to targeted therapy. Furthermore, we show that miR-205-5p directly regulates the expression of p63 which is in turn involved in the EGFR expression suggesting a miR-205/p63/EGFR regulation

    A web-based collaborative translation management system for public health workers

    Full text link
    Copyright is held by the author/owner(s)

    p63 isoforms regulate metabolism of cancer stem cells

    Get PDF
    p63 is an important regulator of epithelial development expressed in different variants containing (TA) or lacking (\u394N) the N-terminal transactivation domain. The different isoforms regulate stem-cell renewal and differentiation as well as cell senescence. Several studies indicate that p63 isoforms also play a role in cancer development; however, very little is known about the role played by p63 in regulating the cancer stem phenotype. Here we investigate the cellular signals regulated by TAp63 and \u394Np63 in a model of epithelial cancer stem cells. To this end, we used colon cancer stem cells, overexpressing either TAp63 or \u394Np63 isoforms, to carry out a proteomic study by chemical-labeling approach coupled to network analysis. Our results indicate that p63 is implicated in a wide range of biological processes, including metabolism. This was further investigated by a targeted strategy at both protein and metabolite levels. The overall data show that TAp63 overexpressing cells are more glycolytic-active than \u394Np63 cells, indicating that the two isoforms may regulate the key steps of glycolysis in an opposite manner. The mass-spectrometry proteomics data of the study have been deposited to the ProteomeXchange Consortium (http://proteomecentral. proteomexchange.org) via the PRIDE partner repository with data set identifiers PXD000769 and PXD000768

    E7 proteins from oncogenic human papillomavirus types transactivate p73: role in cervical intraepithelial neoplasia

    Get PDF
    In common with other E2F1 responsive genes such as p14ARF and B-myb, the promoter of p73 is shown to be positively regulated in cell lines and primary human keratinocytes by E7 proteins from oncogenic human papillomavirus (HPV) types 16, 18, 31 and 33, but not HPV 6. Mutational analysis revealed that transactivation of the p73 promoter by HPV 16E7 requires association with pRb. Expression of p73 in normal cervical epithelium is confined to the basal and supra-basal layers. In contrast, expression in neoplastic lesions is detected throughout the epithelium and increases with grade of neoplasia, being maximal in squamous cell cancers (SCC). Deregulation of expression of the N-terminal splice variant p73Δ2 was observed in a significant proportion of cancers, but not in normal epithelium. The frequent over-expression of p73Δ2, which has recognized transdominant properties, in malignant and pre-malignant lesions suggests a role in the oncogenic process in cervical epithelium

    N6L pseudopeptide interferes with nucleophosmin protein-protein interactions and sensitizes leukemic cells to chemotherapy.

    Get PDF
    Abstract NPM1 is a multifunctional nucleolar protein implicated in several processes such as ribosome maturation and export, DNA damage response and apoptotic response to stress stimuli. The NPM1 gene is involved in human tumorigenesis and is found mutated in one third of acute myeloid leukemia patients, leading to the aberrant cytoplasmic localization of NPM1. Recent studies indicated that the N6L multivalent pseudopeptide, a synthetic ligand of cell–surface nucleolin, is also able to bind NPM1 with high affinity. N6L inhibits cell growth with different mechanisms and represents a good candidate as a novel anticancer drug for a number of malignancies of different histological origin. In this study we investigated whether N6L treatment could drive antitumor effect in acute myeloid leukemia cell lines. We found that N6L binds NPM1 at the N-terminal domain, co-localizes with cytoplasmic, mutated NPM1, and interferes with its protein-protein associations. N6L toxicity appears to be p53 dependent but interestingly, the leukemic cell line harbouring the mutated form of NPM1 is more resistant to treatment, suggesting that NPM1 cytoplasmic delocalization confers protection from p53 activation. Moreover, we show that N6L sensitizes AML cells to doxorubicin and cytarabine treatment. These studies suggest that N6L may be a promising option in combination therapies for acute myeloid leukemia treatment
    • 

    corecore