60 research outputs found

    Interleukin-7, a New Cytokine Targeting the Mouse Hypothalamic Arcuate Nucleus: Role in Body Weight and Food Intake Regulation

    Get PDF
    Body weight is controlled through peripheral (white adipose tissue) and central (mainly hypothalamus) mechanisms. We have recently obtained evidence that overexpression of interleukin (IL)-7, a critical cytokine involved in lymphopoiesis, can protect against the development of diet-induced obesity in mice. Here we assessed whether IL-7 mediated its effects by modulating hypothalamic function. Acute subcutaneous injection of IL-7 prevented monosodium glutamate-induced obesity, this being correlated with partial protection against cell death in the hypothalamic arcuate nucleus (ARC). Moreover, we showed that IL-7 activated hypothalamic areas involved in regulation of feeding behavior, as indicated by induction of the activation marker c-Fos in neural cells located in the ventromedial part of the ARC and by inhibition of food intake after fasting. Both chains of the IL-7 receptor (IL-7Rα and γc) were expressed in the ARC and IL-7 injection induced STAT-3 phosphorylation in this area. Finally, we established that IL-7 modulated the expression of neuropeptides that tune food intake, with a stimulatory effect on the expression of pro-opiomelanocortin and an inhibitory effect on agouti-related peptide expression in accordance with IL-7 promoting anorectic effects. These results suggest that the immunomodulatory cytokine IL-7 plays an important and unappreciated role in hypothalamic body weight regulation

    Novel reporter for faithful monitoring of ERK2 dynamics in living cells and model organisms

    Get PDF
    Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision. ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as regulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary. However, studying the spatiotemporal features of ERK2, for instance, in different cellular processes in living cells and tissues requires a tool that can faithfully report on its subcellular distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and functionally both in vitro and in single living cells. We then assessed the subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our coexpression system in Xenopus laevis embryos during the early stages of development. This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there is a strong correlation between the spatiotemporal subcellular distribution of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes in living cells and embryonic tissues

    A Functional γδTCR/CD3 Complex Distinct from γδT Cells Is Expressed by Human Eosinophils

    Get PDF
    BACKGROUND:Eosinophils are effector cells during parasitic infections and allergic responses. However, their contribution to innate immunity has been only recently unravelled. METHODOLOGY/PRINCIPAL FINDINGS:Here we show that human eosinophils express CD3 and gammadelta T Cell Receptor (TCR) but not alphabeta TCR. Surface expression of gammadeltaTCR/CD3 is heterogeneous between eosinophil donors and inducible by mycobacterial ligands. Surface immunoprecipitation revealed expression of the full gammadeltaTCR/CD3 complex. Real-time PCR amplification for CD3, gamma and delta TCR constant regions transcripts showed a significantly lower expression in eosinophils than in gammadeltaT cells. Limited TCR rearrangements occur in eosinophils as shown by spectratyping analysis of CDR3 length profiles and in situ hybridization. Release by eosinophils of Reactive Oxygen Species, granule proteins, Eosinophil Peroxidase and Eosinophil-Derived Neurotoxin and cytokines (IFN-gamma and TNF-alpha) was observed following activation by gammadeltaTCR-specific agonists or by mycobacteria. These effects were inhibited by anti-gammadeltaTCR blocking antibodies and antagonists. Moreover, gammadeltaTCR/CD3 was involved in eosinophil cytotoxicity against tumor cells. CONCLUSIONS/SIGNIFICANCE:Our results provide evidence that human eosinophils express a functional gammadeltaTCR/CD3 with similar, but not identical, characteristics to gammadeltaTCR from gammadeltaT cells. We propose that this receptor contributes to eosinophil innate responses against mycobacteria and tumors and may represent an additional link between lymphoid and myeloid lineages

    NS2 Protein of Hepatitis C Virus Interacts with Structural and Non-Structural Proteins towards Virus Assembly

    Get PDF
    Growing experimental evidence indicates that, in addition to the physical virion components, the non-structural proteins of hepatitis C virus (HCV) are intimately involved in orchestrating morphogenesis. Since it is dispensable for HCV RNA replication, the non-structural viral protein NS2 is suggested to play a central role in HCV particle assembly. However, despite genetic evidences, we have almost no understanding about NS2 protein-protein interactions and their role in the production of infectious particles. Here, we used co-immunoprecipitation and/or fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy analyses to study the interactions between NS2 and the viroporin p7 and the HCV glycoprotein E2. In addition, we used alanine scanning insertion mutagenesis as well as other mutations in the context of an infectious virus to investigate the functional role of NS2 in HCV assembly. Finally, the subcellular localization of NS2 and several mutants was analyzed by confocal microscopy. Our data demonstrate molecular interactions between NS2 and p7 and E2. Furthermore, we show that, in the context of an infectious virus, NS2 accumulates over time in endoplasmic reticulum-derived dotted structures and colocalizes with both the envelope glycoproteins and components of the replication complex in close proximity to the HCV core protein and lipid droplets, a location that has been shown to be essential for virus assembly. We show that NS2 transmembrane region is crucial for both E2 interaction and subcellular localization. Moreover, specific mutations in core, envelope proteins, p7 and NS5A reported to abolish viral assembly changed the subcellular localization of NS2 protein. Together, these observations indicate that NS2 protein attracts the envelope proteins at the assembly site and it crosstalks with non-structural proteins for virus assembly

    Epithelial Na+ channel stimulation by n-3 fatty acids requires proximity to a membrane-bound A-kinase-anchoring protein complexed with protein kinase A and phosphodiesterase

    No full text
    Essential polyunsatured fatty acids have been shown to modulate enzymes, channels and transporters, to interact with lipid bilayers and to affect metabolic pathways. We have previously shown that eicosapentanoic acid (EPA, C20:5, n-3) activates epithelial sodium channels (ENaCs) in a cAMP-dependent manner involving stimulation of cAMP-dependent protein kinase (PKA). In the present study, we explored further the mechanism of EPA stimulation of ENaC in A6 cells. Fluorescence resonance energy transfer experiments confirmed activation of PKA by EPA. Consistent with our previous studies, EPA had no further stimulatory effect on amiloride-sensitive transepithelial current (INa) in the presence of CPT-cAMP. Thus, we investigated the effect of EPA on cellular pathways which produce cAMP. EPA did not stimulate adenylate cyclase activity or total cellular cAMP accumulation. However, membrane-bound phosphodiesterase activity was inhibited by EPA from 2.46 pmol/mg of protein/min to 1.3 pmol/mg of protein/min. To investigate the potential role of an A-kinase-anchoring protein (AKAP), we used HT31, an inhibitor of the binding between PKA and AKAPs as well as cerulenin, an inhibitor of myristoylation and palmitoylation. Both agents prevented the stimulatory effect of EPA and CPT-cAMP on INa and drastically decreased the amount of PKA in the apical membrane. Colocalization experiments in A6 cells cotransfected with fluorescently labeled ENaC β subunit and PKA regulatory subunit confirmed the close proximity of the two proteins and the membrane anchorage of PKA. Last, in A6 cells transfected with a dead mutant of Sgk, an enzyme which up-regulates ENaCs, EPA did not stimulate Na+ current. Our results suggest that stimulation of ENaCs by EPA occurs via SGK in membrane-bound compartments containing an AKAP, activated PKA, and a phosphodiesterase. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Upgrading time domain FLIM using an adaptive Monte Carlo data inflation algorithm.

    No full text
    International audienceFluorescence Lifetime Imaging Microscopy (FLIM) is a powerful technique to investigate the local environment of fluorophores in living cells. To correctly estimate all lifetime parameters, time domain FLIM imaging requires a high number of photons and consequently long laser exposure times. This is an issue because long exposure times are incompatible with the observation of dynamic molecular events and induce cellular stress. To minimize exposure time, we have developed an original approach that statistically inflates the number of collected photons. Our approach, called Adaptive Monte Carlo Data Inflation (AMDI), combines the well-known bootstrap technique with an adaptive Parzen kernel. We here demonstrate using both Monte Carlo simulations and live cells that our robust method accurately estimate fluorescence lifetimes with exposure time reduced up to 50 times for monoexponential decays (corresponding to a minimum of 20 photons/pixel), and 10 times for biexponential decays (corresponding to a minimum of 5,000 photons/pixel), compared to standard fitting method. Thanks to AMDI, in Förster resonance energy transfer experiments, it is possible to estimate all fitting parameters accurately without constraining any parameters. By reducing the commonly used spatial binning factor, our technique also improves the spatial resolution of FLIM images

    Mathematical models converge on PGC1α as the key metabolic integrator of SIRT1 and AMPK regulation of the circadian clock

    No full text
    International audienceHow the mammalian circadian clock interacts with metabolism and its possible implications in metabolic diseases are actively studied. In PNAS, Foteinou et al. (1) propose a mathematical model of the circadian clock that incorporates the metabolic sensor SIRT1 and validate it with cell experiments. Their findings shed light on conflicting reports by Asher et al. (2) and Nakahata et al. (3) about the effect of SIRT1 deficiency on clock function and SIRT1 targets. The authors conclude that SIRT1 acts on the clock not only via the well-known clock protein PER2, but also through PGC-1α, a transcriptional co-activator of the BMAL1 clock gene with key metabolic functions. Interestingly, the Foteinou model is comparable to the model designed by Woller et al. (4) to understand the mechanisms of liver clock disruption observed upon high-fat diet (HFD) consumption. The two models describe the dynamics of the same molecular network, except that Woller et al. additionally consider clock regulation by the energy sensor AMPK. Remarkably, both models point to a key role of PGC-1α in the circadian clock from different perspectives. The Woller model takes into account the NAMPT-NAD+-SIRT1-PGC1α-ROR-BMAL1 metabolic loop and show its requirement to reproduce the dampened oscillations in clock gene expression observed by Hatori et al. (5) and Eckel-Mahan et al. (6) upon HFD feeding, a condition mimicked by altered AMPK activity. On the other hand, Foteinou et al. (1) report that inclusion of PGC-1α in their model is needed to reproduce correctly the altered reporter expression levels upon combined SIRT1 and BMAL1 silencing. These findings confirm the role of PGC-1α linking SIRT1 and AMPK activities: PGC-1α needs to be phosphorylated by AMPK before it can be deacetylated by SIRT1 (7). The key role of PGC-1α
    corecore