200 research outputs found

    Extent, duration and predictors of exclusive breastfeeding in a longitudinal study: adjusting for missing data using an accelerated failure time model and multiple imputation

    Get PDF
    Background: The World Health Organization recommends at least 6 months of exclusive breastfeeding (EBF). Longitudinal studies facilitate estimation of EBF duration, but often suffer from loss to follow-up and missing information. The study estimates the prevalence of EBF, duration and predictors of EBF duration while adjusting for missing data using multiple imputation (MI). Methods: A longitudinal study was conducted on all women giving birth between September 2009-February 2010 in selected hospitals (N=2119). Data on EBF and socio-demographic and other characteristics were collected at birth, and at 2, 6, 12 and 24 months. Information on EBF status and duration was missing for 29%. To deal with missing data, we generated multiple datasets using logistic regression-based MI to impute missing EBF practice, and an accelerated failure time (AFT) model to impute missing duration of EBF. The latter model also identified factors associated with EBF duration. Results: The observed 64% of women practicing EBF (95%CI; 62%-66%) was adjusted, after imputation, to 62% (95%CI; 60%-65%). After imputation, the estimated median time of EBF among women practicing EBF was 4.9 months. Predictors of EBF duration were stated intention to breastfeed, religious observance, and giving formula milk while in hospital. Conclusion: Adjusting estimates of EBF practice and duration using MI is feasible and potentially important. Using an AFT model for EBF duration enables the execution of MI in such studies and allows direct interpretation of the impact of various factors on EBF duration.&nbsp

    Can we use biomarkers in combination with self-reports to strengthen the analysis of nutritional epidemiologic studies?

    Get PDF
    Identifying diet-disease relationships in nutritional cohort studies is plagued by the measurement error in self-reported intakes

    Intake_epis_food(): An R Function for Fitting a Bivariate Nonlinear Measurement Error Model to Estimate Usual and Energy Intake for Episodically Consumed Foods

    Get PDF
    We consider a Bayesian analysis using WinBUGS to estimate the distribution of usual intake for episodically consumed foods and energy (calories). The model uses measures of nutrition and energy intakes via a food frequency questionnaire along with repeated 24 hour recalls and adjusting covariates. In order to estimate the usual intake of the food, we phrase usual intake in terms of person-specific random effects, along with day-to-day variability in food and energy consumption. Three levels are incorporated in the model. The first level incorporates information about whether an individual reported consumption of a particular food item. The second level incorporates the amount of food consumption equalling to zero if not consumed, and the third level incorporates the amount of energy intake. Estimates of posterior means of parameters and distributions of usual intakes are obtained by using Markov chain Monte Carlo calculations which can be thought as mean estimates for frequentists. This R function reports to users point estimates and credible intervals for parameters in the model, samples from their posterior distribution, samples from the distribution of usual intake and usual energy intake, trace plots of parameters and summary statistics of usual intake, usual energy intake and energy adjusted usual intake

    Statistical issues related to dietary intake as the response variable in intervention trials.

    Get PDF
    The focus of this paper is dietary intervention trials. We explore the statistical issues involved when the response variable, intake of a food or nutrient, is based on self-report data that are subject to inherent measurement error. There has been little work on handling error in this context. A particular feature of self-reported dietary intake data is that the error may be differential by intervention group. Measurement error methods require information on the nature of the errors in the self-report data. We assume that there is a calibration sub-study in which unbiased biomarker data are available. We outline methods for handling measurement error in this setting and use theory and simulations to investigate how self-report and biomarker data may be combined to estimate the intervention effect. Methods are illustrated using data from the Trial of Nonpharmacologic Intervention in the Elderly, in which the intervention was a sodium-lowering diet and the response was sodium intake. Simulations are used to investigate the methods under differential error, differing reliability of self-reports relative to biomarkers and different proportions of individuals in the calibration sub-study. When the reliability of self-report measurements is comparable with that of the biomarker, it is advantageous to use the self-report data in addition to the biomarker to estimate the intervention effect. If, however, the reliability of the self-report data is low compared with that in the biomarker, then, there is little to be gained by using the self-report data. Our findings have important implications for the design of dietary intervention trials. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd

    DNA Repair Biomarker for Lung Cancer Risk and its Correlation With Airway Cells Gene Expression.

    Get PDF
    Background: Improving lung cancer risk assessment is required because current early-detection screening criteria miss most cases. We therefore examined the utility for lung cancer risk assessment of a DNA Repair score obtained from OGG1, MPG, and APE1 blood tests. In addition, we examined the relationship between the level of DNA repair and global gene expression. Methods: We conducted a blinded case-control study with 150 non-small cell lung cancer case patients and 143 control individuals. DNA Repair activity was measured in peripheral blood mononuclear cells, and the transcriptome of nasal and bronchial cells was determined by RNA sequencing. A combined DNA Repair score was formed using logistic regression, and its correlation with disease was assessed using cross-validation; correlation of expression to DNA Repair was analyzed using Gene Ontology enrichment. Results: DNA Repair score was lower in case patients than in control individuals, regardless of the case's disease stage. Individuals at the lowest tertile of DNA Repair score had an increased risk of lung cancer compared to individuals at the highest tertile, with an odds ratio (OR) of 7.2 (95% confidence interval [CI] = 3.0 to 17.5; P < .001), and independent of smoking. Receiver operating characteristic analysis yielded an area under the curve  of 0.89 (95% CI = 0.82 to 0.93). Remarkably, low DNA Repair score correlated with a broad upregulation of gene expression of immune pathways in patients but not in control individuals. Conclusions: The DNA Repair score, previously shown to be a lung cancer risk factor in the Israeli population, was validated in this independent study as a mechanism-based cancer risk biomarker and can substantially improve current lung cancer risk prediction, assisting prevention and early detection by computed tomography scanning.This work was funded by grants from NIH/NCI/EDRN (#1 U01 CA111219), the Flight Attendant Medical Research Institute, Florida, the Mike Rosenbloom Foundation and Weizmann Institute of Science to ZL and TPE; and by grants from Cancer Research UK to BP and to the Cancer Research UK Cambridge Centre; and by a UK National Institute for Health Research Senior Fellowship to BP; and by the Cambridge Biomedical Research Centre and the Cancer Research UK Cambridge Centre to RCR. Volunteer participant recruitment through the Cambridge Bioresource was funded by the Cambridge Biomedical Research Centre

    A randomized controlled phase III study of VB-111 combined with bevacizumab vs bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE)

    Get PDF
    BACKGROUND: Ofranergene obadenovec (VB-111) is an anticancer viral therapy that demonstrated in a phase II study a survival benefit for patients with recurrent glioblastoma (rGBM) who were primed with VB-111 monotherapy that was continued after progression with concomitant bevacizumab. METHODS: This pivotal phase III randomized, controlled trial compared the efficacy and safety of upfront combination of VB-111 and bevacizumab versus bevacizumab monotherapy. Patients were randomized 1:1 to receive VB-111 1013 viral particles every 8 weeks in combination with bevacizumab 10 mg/kg every 2 weeks (combination arm) or bevacizumab monotherapy (control arm). The primary endpoint was overall survival (OS), and secondary endpoints were objective response rate (ORR) by Response Assessment in Neuro-Oncology (RANO) criteria and progression-free survival (PFS). RESULTS: Enrolled were 256 patients at 57 sites. Median exposure to VB-111 was 4 months. The study did not meet its primary or secondary goals. Median OS was 6.8 versus 7.9 months in the combination versus control arm (hazard ratio, 1.20; 95% CI: 0.91-1.59; P = 0.19) and ORR was 27.3% versus 21.9% (P = 0.26). A higher rate of grades 3-5 adverse events was reported in the combination arm (67% vs 40%), mainly attributed to a higher rate of CNS and flu-like/fever events. Trends for improved survival with combination treatment were seen in the subgroup of patients with smaller tumors and in patients who had a posttreatment febrile reaction. CONCLUSIONS: In this study, upfront concomitant administration of VB-111 and bevacizumab failed to improve outcomes in rGBM. Change of treatment regimen, with the lack of VB-111 monotherapy priming, may explain the differences from the favorable phase II results. CLINICAL TRIALS REGISTRATION: NCT02511405

    Epidemiologic analyses with error-prone exposures: review of current practice and recommendations.

    Get PDF
    PURPOSE: Variables in observational studies are commonly subject to measurement error, but the impact of such errors is frequently ignored. As part of the STRengthening Analytical Thinking for Observational Studies Initiative, a task group on measurement error and misclassification seeks to describe the current practice for acknowledging and addressing measurement error. METHODS: Task group on measurement error and misclassification conducted a literature survey of four types of research studies that are typically impacted by exposure measurement error: (1) dietary intake cohort studies, (2) dietary intake population surveys, (3) physical activity cohort studies, and (4) air pollution cohort studies. RESULTS: The survey revealed that while researchers were generally aware that measurement error affected their studies, very few adjusted their analysis for the error. Most articles provided incomplete discussion of the potential effects of measurement error on their results. Regression calibration was the most widely used method of adjustment. CONCLUSIONS: Methods to correct for measurement error are available but require additional data regarding the error structure. There is a great need to incorporate such data collection within study designs and improve the analytical approach. Increased efforts by investigators, editors, and reviewers are needed to improve presentation of research when data are subject to error
    • …
    corecore