601 research outputs found

    Phosphine Functionalization of GaAs(111)A Surfaces

    Get PDF
    Phosphorus-functionalized GaAs surfaces have been prepared by exposure of Cl-terminated GaAs(111)A surfaces to triethylphosphine (PEt3) or trichlorophosphine (PCl3), or by the direct functionalization of the native-oxide terminated GaAs(111)A surface with PCl3. The presence of phosphorus on each functionalized surface was confirmed by X-ray photoelectron spectroscopy. High-resolution, soft X-ray photoelectron spectroscopy was used to evaluate the As and Ga 3d regions of such surfaces. On PEt3 treated surfaces, the Ga 3d spectra exhibited a bulk Ga peak as well as peaks that were shifted to 0.35, 0.92 and 1.86 eV higher binding energy. These peaks were assigned to residual Cl-terminated Ga surface sites, surficial Ga2O and surficial Ga2O3, respectively. For PCl3-treated surfaces, the Ga 3d spectra displayed peaks ascribable to bulk Ga(As), Ga2O, and Ga2O3, as well as a peak shifted 0.30 eV to higher binding energy relative to the bulk signal. A peak corresponding to Ga(OH)3, observed on the Cl-terminated surface, was absent from all of the phosphine-functionalized surfaces. After reaction of the Cl-terminated GaAs(111)A surface with PCl3 or PEt3, the As 3d spectral region was free of As oxides and As0. Although native oxide-terminated GaAs surfaces were free of As oxides after reaction with PCl3, such surfaces contained detectable amounts of As0. Photoluminescence measurements indicted that phosphine-functionalized surfaces prepared from Cl-terminated GaAs(111)A surfaces had better electrical properties than the native-oxide capped GaAs(111)A surface, while the native-oxide covered surface treated with PCl3 showed no enhancement in PL intensity

    Efficacy and Renal Outcomes of SGLT2 Inhibitors in Patients with Type 2 Diabetes and Chronic Kidney Disease

    Get PDF
    Objective: To review glucose-lowering efficacy and changes in renal function associated with sodium-glucose co-transporter 2 (SGLT2) inhibitors among patients with chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM). Data sources: A literature search of MEDLINE and Cochrane databases was performed from 2000 to August 2018 using search terms: SGLT2 inhibitors, sodium glucose co-transporter 2, canagliflozin, empagliflozin, dapagliflozin, ertugliflozin, and chronic kidney disease. References of identified articles were also reviewed. Study selection and data extraction: English-language studies investigating glucose-lowering endpoints and/or changes in renal function with one of four U.S. approved SGLT2 inhibitors were included. A total of 10 studies met inclusion criteria and are included in this review. Results: In patients with T2DM and CKD, SGLT2 inhibitors are modestly effective in lowering hemoglobin A1C and fasting plasma glucose compared to placebo. Small reductions in eGFR are seen shortly after initiating therapy with SGLT2 inhibitors, but return to baseline levels after discontinuation. SGLT2 inhibitors are associated with a substantial reduction in albuminuria and reduced risk of progression to albuminuria. Conclusions: In patients with T2DM and CKD, SGLT2 inhibitors have a decreased glucose-lowering effect compared to patients without CKD. Renal benefits among patients with CKD are similar to those without CKD and include a significant reduction in albuminuria and reduced incidence of worsening albuminuria. Given that CKD and T2DM are both associated with increased cardiovascular risk, we believe these agents should considered as preferred add-on agents in most patients with uncontrolled T2DM and eGFR \u3e30 ml/min/1.73 m2. Ongoing studies will provide additional information as to whether these agents should be added to the current standard of care for CKD patients, with and without T2DM

    Thyroid hormone regulates distinct paths to maturation in pigment cell lineages

    Get PDF
    Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form

    Scanning tunneling spectroscopy of methyl- and ethyl-terminated Si(111) surfaces

    Get PDF
    Methyl- and ethyl-terminated Si(111) surfaces prepared by a two-step chlorination/alkylation method were characterized by low temperature scanning tunneling spectroscopy (STS). The STS data showed remarkably low levels of midgap states on the CH3- and C2H5-terminated Si surfaces. A large conductance gap relative to the Si band gap was observed for both surfaces as well as for the hydrogen-terminated Si(111) surface. This large gap is ascribed to scanning tunneling microscope tip-induced band bending resulting from a low density of midgap states which avoid pinning of the Fermi levels on these passivated surfaces

    Glucosinolates from cruciferous vegetables and their potential role in chronic disease: Investigating the preclinical and clinical evidence

    Get PDF
    An increasing body of evidence highlights the strong potential for a diet rich in fruit and vegetables to delay, and often prevent, the onset of chronic diseases, including cardiometabolic, neurological, and musculoskeletal conditions, and certain cancers. A possible protective component, glucosinolates, which are phytochemicals found almost exclusively in cruciferous vegetables, have been identified from preclinical and clinical studies. Current research suggests that glucosinolates (and isothiocyanates) act via several mechanisms, ultimately exhibiting anti-inflammatory, antioxidant, and chemo-protective effects. This review summarizes the current knowledge surrounding cruciferous vegetables and their glucosinolates in relation to the specified health conditions. Although there is evidence that consumption of a high glucosinolate diet is linked with reduced incidence of chronic diseases, future large-scale placebo-controlled human trials including standardized glucosinolate supplements are needed

    Glucosinolates from cruciferous vegetables and their potential role in chronic disease: Investigating the preclinical and clinical evidence

    Get PDF
    An increasing body of evidence highlights the strong potential for a diet rich in fruit and vegetables to delay, and often prevent, the onset of chronic diseases, including cardiometabolic, neurological, and musculoskeletal conditions, and certain cancers. A possible protective component, glucosinolates, which are phytochemicals found almost exclusively in cruciferous vegetables, have been identified from preclinical and clinical studies. Current research suggests that glucosinolates (and isothiocyanates) act via several mechanisms, ultimately exhibiting anti-inflammatory, antioxidant, and chemo-protective effects. This review summarizes the current knowledge surrounding cruciferous vegetables and their glucosinolates in relation to the specified health conditions. Although there is evidence that consumption of a high glucosinolate diet is linked with reduced incidence of chronic diseases, future large-scale placebo-controlled human trials including standardized glucosinolate supplements are needed

    Chemical and electronic characterization of methyl-terminated Si(111) surfaces by high-resolution synchrotron photoelectron spectroscopy

    Get PDF
    The chemical state, electronic properties, and geometric structure of methyl-terminated Si(111) surfaces prepared using a two-step chlorination/alkylation process were investigated using high-resolution synchrotron photoelectron spectroscopy and low-energy electron diffraction methods. The electron diffraction data indicated that the methylated Si surfaces maintained a (1×1) structure, where the dangling bonds of the silicon surface atoms were terminated by methyl groups. The surfaces were stable to annealing at 720 K. The high degree of ordering was reflected in a well-resolved vibrational fine structure of the carbon 1s photoelectron emission, with the fine structure arising from the excitation of C-H stretching vibrations having hnu=0.38±0.01 eV. The carbon-bonded surface Si atoms exhibited a well-defined x-ray photoelectron signal having a core level shift of 0.30±0.01 eV relative to bulk Si. Electronically, the Si surface was close to the flat-band condition. The methyl termination produced a surface dipole of –0.4 eV. Surface states related to piCH3 and sigmaSi-C bonding orbitals were identified at binding energies of 7.7 and 5.4 eV, respectively. Nearly ideal passivation of Si(111) surfaces can thus be achieved by methyl termination using the two-step chlorination/alkylation process

    Sexual Size Dimorphism and Body Condition in the Australasian Gannet

    Get PDF
    Funding: The research was financially supported by the Holsworth Wildlife Research Endowment. Acknowledgments We thank the Victorian Marine Science Consortium, Sea All Dolphin Swim, Parks Victoria, and the Point Danger Management Committee for logistical support. We are grateful for the assistance of the many field volunteers involved in the study.Peer reviewedPublisher PD
    corecore