9 research outputs found

    Autonomic Nervous System Dysfunction in Pediatric Sepsis

    Get PDF
    The autonomic nervous system (ANS) plays a major role in maintaining homeostasis through key adaptive responses to stress, including severe infections and sepsis. The ANS-mediated processes most relevant during sepsis include regulation of cardiac output and vascular tone, control of breathing and airway resistance, inflammation and immune modulation, gastrointestinal motility and digestion, and regulation of body temperature. ANS dysfunction (ANSD) represents an imbalanced or maladaptive response to injury and is prevalent in pediatric sepsis. Most of the evidence on ANSD comes from studies of heart rate variability, which is a marker of ANS function and is inversely correlated with organ dysfunction and mortality. In addition, there is evidence that other measures of ANSD, such as respiratory rate variability, skin thermoregulation, and baroreflex and chemoreflex sensitivity, are associated with outcomes in critical illness. The relevance of understanding ANSD in the context of pediatric sepsis stems from the fact that it might play an important role in the pathophysiology of sepsis, is associated with outcomes, and can be measured continuously and noninvasively. Here we review the physiology and dysfunction of the ANS during critical illness, discuss methods for measuring ANS function in the intensive care unit, and review the diagnostic, prognostic, and therapeutic value of understanding ANSD in pediatric sepsis

    Heart rate variability as a marker of recovery from critical illness in children.

    No full text
    ObjectivesThe purpose of this study was to Identify whether changes in heart rate variability (HRV) could be detected as critical illness resolves by comparing HRV from the time of pediatric intensive care unit (PICU) admission with HRV immediately prior to discharge. We also sought to demonstrate that HRV derived from electrocardiogram (ECG) data from bedside monitors can be calculated in critically-ill children using a real-time, streaming analytics platform.MethodsThis was a retrospective, observational pilot study of 17 children aged 0 to 18 years admitted to the PICU of a free-standing, academic children's hospital. Three time-domain measures of HRV were calculated in real-time from bedside monitor ECG data and stored for analysis. Measures included: root mean square of successive differences between NN intervals (RMSSD), percent of successive NN interval differences above 50 ms (pNN50), and the standard deviation of NN intervals (SDNN).ResultsHRV values calculated from the first and last 24 hours of PICU stay were analyzed. Mixed effects models demonstrated that all three measures of HRV were significantly lower during the first 24 hours compared to the last 24 hours of PICU admission (pConclusionHRV was significantly lower in the first 24 hours compared to the 24 hours preceding PICU discharge, after resolution of critical illness. This demonstrates that it is feasible to detect changes in HRV using an automated, streaming analytics platform. Continuous tracking of HRV may serve as a marker of recovery in critically ill children

    Antibodies That Inhibit Binding of Plasmodium falciparum-Infected Erythrocytes to Chondroitin Sulfate A and to the C Terminus of Merozoite Surface Protein 1 Correlate with Reduced Placental Malaria in Cameroonian Women

    No full text
    Plasmodium falciparum-infected erythrocytes often sequester in the placenta of pregnant women, producing placental malaria, a condition that can compromise the health of the developing fetus. Scientists are hopeful that a vaccine can be developed to prevent this condition. Immunological mechanisms responsible for eliminating parasites from the placenta remain unclear, but antibodies to the carboxyl-terminal 19-kDa segment of the merozoite surface protein 1 (MSP1-19), the ring-infected erythrocyte surface antigen (RESA), and an erythrocyte-surface ligand that binds chondroitin sulfate A (CSA-L) have been implicated. In addition, antibodies to sporozoite and liver-stage antigens could reduce initial parasite burdens. This study sought to determine if antibodies to the circumsporozoite protein (CSP), liver-stage antigen 1 (LSA1), RESA, MSP1-19, or CSA-L correlated with either the absence of placental parasites or low placental parasitemias. Using a frequency-matched case-control study design, we compared antibody levels in women (gravidity 1 to 11) with and without placental malaria. Results showed that women who were antibody negative for MSP1-19 were at a higher risk of having placental malaria than women with antibodies (P < 0.007). Furthermore, an association between high levels of antibodies that blocked the binding of infected erythrocytes to CSA and low placental parasitemias was observed (P = 0.02). On the other hand, women with high antibody levels at term to CSP, LSA1, and RESA were more likely to have placental malaria than antibody-negative women. Since antibodies to MSP1-19 and CSA-L were associated with reduced placental malaria, both antigens show promise for inclusion in a vaccine for women of child-bearing age

    A comprehensive wireless neurological and cardiopulmonary monitoring platform for pediatrics.

    No full text
    Neurodevelopment in the first 10 years of life is a critical time window during which milestones that define an individual's functional potential are achieved. Comprehensive multimodal neurodevelopmental monitoring is particularly crucial for socioeconomically disadvantaged, marginalized, historically underserved and underrepresented communities as well as medically underserved areas. Solutions designed for use outside the traditional clinical environment represent an opportunity for addressing such health inequalities. In this work, we present an experimental platform, ANNE EEG, which adds 16-channel cerebral activity monitoring to the existing, USA FDA-cleared ANNE wireless monitoring platform which provides continuous electrocardiography, respiratory rate, pulse oximetry, motion, and temperature measurements. The system features low-cost consumables, real-time control and streaming with widely available mobile devices, and fully wearable operation to allow a child to remain in their naturalistic environment. This multi-center pilot study successfully collected ANNE EEG recordings from 91 neonatal and pediatric patients at academic quaternary pediatric care centers and in LMIC settings. We demonstrate the practicality and feasibility to conduct electroencephalography studies with high levels of accuracy, validated via both quantitative and qualitative metrics, compared against gold standard systems. An overwhelming majority of parents surveyed during studies indicated not only an overall preference for the wireless system, but also that its use would improve their children's physical and emotional health. Our findings demonstrate the potential for the ANNE system to perform multimodal monitoring to screen for a variety of neurologic diseases that have the potential to negatively impact neurodevelopment

    Assessment of Comorbid Symptoms in Pediatric Autonomic Dysfunction

    No full text
    PURPOSE: Pediatric patients with autonomic dysfunction and orthostatic intolerance (OI) often present with co-existing symptoms and signs that might or might not directly relate to the autonomic nervous system. Our objective was to identify validated screening instruments to characterize these comorbidities and their impact on youth functioning. METHODS: The Pediatric Assembly of the American Autonomic Society reviewed the current state of practice for identifying symptom comorbidities in youth with OI. The assembly includes physicians, physician-scientists, scientists, advanced practice providers, psychologists, and a statistician with expertise in pediatric disorders of OI. A total of 26 representatives from the various specialties engaged in iterative meetings to: (1) identify and then develop consensus on the symptoms to be assessed, (2) establish committees to review the literature for screening measures by member expertise, and (3) delineate the specific criteria for systematically evaluating the measures and for making measure recommendations by symptom domains. RESULTS: We review the measures evaluated and recommend one measure per system/concern so that assessment results from unrelated clinical centers are comparable. We have created a repository to apprise investigators of validated, vetted assessment tools to enhance comparisons across cohorts of youth with autonomic dysfunction and OI. CONCLUSION: This effort can facilitate collaboration among clinical settings to advance the science and clinical treatment of these youth. This effort is essential to improving management of these vulnerable patients as well as to comparing research findings from different centers

    Creating a Data Dictionary for Pediatric Autonomic Disorders

    No full text
    PURPOSE: Whether evaluating patients clinically, documenting care in the electronic health record, performing research, or communicating with administrative agencies, the use of a common set of terms and definitions is vital to ensure appropriate use of language. At a 2017 meeting of the Pediatric Section of the American Autonomic Society, it was determined that an autonomic data dictionary comprising aspects of evaluation and management of pediatric patients with autonomic disorders would be an important resource for multiple stakeholders. METHODS: Our group created the list of terms for the dictionary. Definitions were prioritized to be obtained from established sources with which to harmonize. Some definitions needed mild modification from original sources. The next tier of sources included published consensus statements, followed by Internet sources. In the absence of appropriate sources, we created a definition. RESULTS: A total of 589 terms were listed and defined in the dictionary. Terms were organized by Signs/Symptoms, Triggers, Co-morbid Disorders, Family History, Medications, Medical Devices, Physical Examination Findings, Testing, and Diagnoses. CONCLUSION: Creation of this data dictionary becomes the foundation of future clinical care and investigative research in pediatric autonomic disorders, and can be used as a building block for a subsequent adult autonomic data dictionary

    Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units

    No full text
    Standard clinical care in neonatal and pediatric intensive-care units (NICUs and PICUs, respectively) involves continuous monitoring of vital signs with hard-wired devices that adhere to the skin and, in certain instances, can involve catheter-based pressure sensors inserted into the arteries. These systems entail risks of causing iatrogenic skin injuries, complicating clinical care and impeding skin-to-skin contact between parent and child. Here we present a wireless, non-invasive technology that not only offers measurement equivalency to existing clinical standards for heart rate, respiration rate, temperature and blood oxygenation, but also provides a range of important additional features, as supported by data from pilot clinical studies in both the NICU and PICU. These new modalities include tracking movements and body orientation, quantifying the physiological benefits of skin-to-skin care, capturing acoustic signatures of cardiac activity, recording vocal biomarkers associated with tonality and temporal characteristics of crying and monitoring a reliable surrogate for systolic blood pressure. These platforms have the potential to substantially enhance the quality of neonatal and pediatric critical care
    corecore