17 research outputs found

    Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry

    Get PDF
    Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10 ) and AC058822.1 (P = 1.47 × 10 ), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10 ), demonstrating the importance of diversifying study cohorts. [Abstract copyright: © 2023. The Author(s).

    Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations

    Get PDF
    Purpose To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics. Patients and Methods One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS). Results There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO. Conclusion Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit

    Effects of Motor Cortical Stimulation during Planar Reaching Movement

    No full text
    Background: The purpose was to examine the effects of single pulse transcranial magnetic stimulation (TMS) over primary motor cortex delivered at different times during a center-out reaching task in a robot reaching environment. Methods: Eleven right-handed subjects participated. Movement hotspots and thresholds were determined for each subject, and the stimulation intensity was set at 120% of the movement threshold. TMS was delivered at rest and when subjects performed a series of reaching tasks. The 5 different conditions were: no stimulation, sham stimulation, and stimulation at 150, 500, or 1000 ms post go cue. Outcome measures included TMS-evoked movement during rest and in the 150ms condition, trajectory deviations (no stimulation, sham, and 150ms conditions), and peak velocity (PV), path length, reaction time, acceleration time, and deceleration time for all conditions. Results: When TMS was applied at 150 ms, the evoked path lengths were significantly shorter than at rest and had less deviation than the no-stimulation condition (p &lt; 0.05). Peak velocities were lowest during the no-stimulation condition and highest during the 500ms condition (p &lt; 0.05). Path lengths were significantly shorter during the no-stimulation, sham, and 150ms condition compared to the 500ms and 1000ms conditions. Conclusions: TMS applied during the reaction time phase suppressed movements evoked by TMS, decreased trajectory deviations, and shortened path length, while TMS delivered after movement onset increased PV and path length. TMS stimulation may be delivered to enhance movement parameters and potentially facilitate reach training in the robotic rehabilitation environment

    Predictors and brain connectivity changes associated with arm motor function improvement from intensive practice in chronic stroke [version 2; referees: 1 approved, 2 approved with reservations]

    No full text
    Background and Purpose: The brain changes that underlie therapy-induced improvement in motor function after stroke remain obscure. This study sought to demonstrate the feasibility and utility of measuring motor system physiology in a clinical trial of intensive upper extremity rehabilitation in chronic stroke-related hemiparesis. Methods: This was a substudy of two multi-center clinical trials of intensive robotic and intensive conventional therapy arm therapy in chronic, significantly hemiparetic, stroke patients. Transcranial magnetic stimulation was used to measure motor cortical output to the biceps and extensor digitorum communus muscles. Magnetic resonance imaging (MRI) was used to determine the cortical anatomy, as well as to measure fractional anisotropy, and blood oxygenation (BOLD) during an eyes-closed rest state. Region-of-interest time-series correlation analysis was performed on the BOLD signal to determine interregional connectivity. Functional status was measured with the upper extremity Fugl-Meyer and Wolf Motor Function Test. Results: Motor evoked potential (MEP) presence was associated with better functional outcomes, but the effect was not significant when considering baseline impairment. Affected side internal capsule fractional anisotropy was associated with better function at baseline. Affected side primary motor cortex (M1) activity became more correlated with other frontal motor regions after treatment. Resting state connectivity between affected hemisphere M1 and dorsal premotor area (PMAd) predicted recovery. Conclusions: Presence of motor evoked potentials in the affected motor cortex and its functional connectivity with PMAd may be useful in predicting recovery. Functional connectivity in the motor network shows a trends towards increasing after intensive robotic or non-robotic arm therapy. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00372411 \& NCT00333983

    Effect of gravity on robot-assisted motor training after chronic stroke: a randomized trial

    No full text
    Objectives: to determine the efficacy of 2 distinct 6-week robot-assisted reaching programs compared with an intensive conventional arm exercise program (ICAE) for chronic, stroke-related upper-extremity (UE) impairment. To examine whether the addition of robot-assisted training out of the horizontal plane leads to improved outcomes.Design: randomized controlled trial, single-blinded, with 12-week follow-up.Setting: research setting in a large medical center.Participants: adults (N=62) with chronic, stroke-related arm weakness stratified by impairment severity using baseline UE motor assessments.Interventions: sixty minutes, 3 times a week for 6 weeks of robot-assisted planar reaching (gravity compensated), combined planar with vertical robot-assisted reaching, or intensive conventional arm exercise program.Main outcome measure: UE Fugl-Meyer Assessment (FMA) mean change from baseline to final training.Results: all groups showed modest gains in the FMA from baseline to final with no significant between group differences. Most change occurred in the planar robot group (mean change ± SD, 2.94±0.77; 95% confidence interval [CI], 1.40–4.47). Participants with greater motor impairment (n=41) demonstrated a larger difference in response (mean change ± SD, 2.29±0.72; 95% CI, 0.85–3.72) for planar robot-assisted exercise compared with the intensive conventional arm exercise program (mean change ± SD, 0.43±0.72; 95% CI, –1.00 to 1.86).Conclusions: chronic UE deficits because of stroke are responsive to intensive motor task training. However, training outside the horizontal plane in a gravity present environment using a combination of vertical with planar robots was not superior to training with the planar robot alon
    corecore