14 research outputs found

    Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD

    Full text link
    Frontotemporal dementia (FTD) is the most common cause of dementia in people under 60 yr of age and is pathologically associated with mislocalization of TAR DNA/RNA binding protein 43 (TDP-43) in approximately half of cases (FLTD-TDP). Mutations in the gene encoding progranulin (GRN), which lead to reduced progranulin levels, are a significant cause of familial FTLD-TDP. Grn-KO mice were developed as an FTLD model, but lack cortical TDP-43 mislocalization and neurodegeneration. Here, we report retinal thinning as an early disease phenotype in humans with GRN mutations that precedes dementia onset and an age-dependent retinal neurodegenerative phenotype in Grn-KO mice. Retinal neuron loss in Grn-KO mice is preceded by nuclear depletion of TDP-43 and accompanied by reduced expression of the small GTPase Ran, which is a master regulator of nuclear import required for nuclear localization of TDP-43. In addition, TDP-43 regulates Ran expression, likely via binding to its 3′-UTR. Augmented expression of Ran in progranulin-deficient neurons restores nuclear TDP-43 levels and improves their survival. Our findings establish retinal neurodegeneration as a new phenotype in progranulin-deficient FTLD, and suggest a pathological loop involving reciprocal loss of Ran and nuclear TDP-43 as an underlying mechanism

    Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury

    No full text
    Progranulin (PGRN) is a widely expressed secreted protein that is linked to inflammation. In humans, PGRN haploinsufficiency is a major inherited cause of frontotemporal dementia (FTD), but how PGRN deficiency causes neurodegeneration is unknown. Here we show that loss of PGRN results in increased neuron loss in response to injury in the CNS. When exposed acutely to 1-methyl-4-(2′-methylphenyl)-1,2,3,6-tetrahydrophine (MPTP), mice lacking PGRN (Grn(–/–)) showed more neuron loss and increased microgliosis compared with wild-type mice. The exacerbated neuron loss was due not to selective vulnerability of Grn(–/–) neurons to MPTP, but rather to an increased microglial inflammatory response. Consistent with this, conditional mutants lacking PGRN in microglia exhibited MPTP-induced phenotypes similar to Grn(–/–) mice. Selective depletion of PGRN from microglia in mixed cortical cultures resulted in increased death of wild-type neurons in the absence of injury. Furthermore, Grn(–/–) microglia treated with LPS/IFN-γ exhibited an amplified inflammatory response, and conditioned media from these microglia promoted death of cultured neurons. Our results indicate that PGRN deficiency leads to dysregulated microglial activation and thereby contributes to increased neuron loss with injury. These findings suggest that PGRN deficiency may cause increased neuron loss in other forms of CNS injury accompanied by neuroinflammation

    Dissociation of Frontotemporal Dementia-Related Deficits and Neuroinflammation in Progranulin Haploinsufficient Mice

    No full text
    Frontotemporal dementia (FTD) is a neurodegenerative disease with hallmark deficits in social and emotional function. Heterozygous loss-of-function mutations in GRN, the progranulin gene, are a common genetic cause of the disorder, but the mechanisms by which progranulin haploinsufficiency causes neuronal dysfunction in FTD are unclear. Homozygous progranulin knockout (Grn(−/−)) mice have been studied as a model of this disorder and show behavioral deficits and a neuroinflammatory phenotype with robust microglial activation. However, homozygous GRN mutations causing complete progranulin deficiency were recently shown to cause a different neurological disorder, neuronal ceroid lipofuscinosis, suggesting that the total absence of progranulin may have effects distinct from those of haploinsufficiency. Here, we studied progranulin heterozygous (Grn(+/−)) mice, which model progranulin haploinsufficiency. We found that Grn(+/−) mice developed age-dependent social and emotional deficits potentially relevant to FTD. However, unlike Grn(−/−) mice, behavioral deficits in Grn(+/−) mice occurred in the absence of gliosis or increased expression of tumor necrosis factor–α. Instead, we found neuronal abnormalities in the amygdala, an area of selective vulnerability in FTD, in Grn(+/−) mice. Our findings indicate that FTD-related deficits due to progranulin haploinsufficiency can develop in the absence of detectable gliosis and neuroinflammation, thereby dissociating microglial activation from functional deficits and suggesting an important effect of progranulin deficiency on neurons

    Dissociation of Frontotemporal Dementia–Related Deficits and Neuroinflammation in Progranulin Haploinsufficient Mice

    No full text
    Frontotemporal dementia (FTD) is a neurodegenerative disease with hallmark deficits in social and emotional function. Heterozygous loss-of-function mutations in GRN, the progranulin gene, are a common genetic cause of the disorder, but the mechanisms by which progranulin haploinsufficiency causes neuronal dysfunction in FTD are unclear. Homozygous progranulin knock-out (Grn(-/-)) mice have been studied as a model of this disorder and show behavioral deficits and a neuroinflammatory phenotype with robust microglial activation. However, homozygous GRN mutations causing complete progranulin deficiency were recently shown to cause a different neurological disorder, neuronal ceroid lipofuscinosis, suggesting that the total absence of progranulin may have effects distinct from those of haploinsufficiency. Here, we studied progranulin heterozygous (Grn(+/-)) mice, which model progranulin haploinsufficiency. We found that Grn(+/-) mice developed age-dependent social and emotional deficits potentially relevant to FTD. However, unlike Grn(-/-) mice, behavioral deficits in Grn(+/-) mice occurred in the absence of gliosis or increased expression of tumor necrosis factor-α. Instead, we found neuronal abnormalities in the amygdala, an area of selective vulnerability in FTD, in Grn(+/-) mice. Our findings indicate that FTD-related deficits resulting from progranulin haploinsufficiency can develop in the absence of detectable gliosis and neuroinflammation, thereby dissociating microglial activation from functional deficits and suggesting an important effect of progranulin deficiency on neurons

    Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD.

    No full text
    Frontotemporal dementia (FTD) is the most common cause of dementia in people under 60 yr of age and is pathologically associated with mislocalization of TAR DNA/RNA binding protein 43 (TDP-43) in approximately half of cases (FLTD-TDP). Mutations in the gene encoding progranulin (GRN), which lead to reduced progranulin levels, are a significant cause of familial FTLD-TDP. Grn-KO mice were developed as an FTLD model, but lack cortical TDP-43 mislocalization and neurodegeneration. Here, we report retinal thinning as an early disease phenotype in humans with GRN mutations that precedes dementia onset and an age-dependent retinal neurodegenerative phenotype in Grn-KO mice. Retinal neuron loss in Grn-KO mice is preceded by nuclear depletion of TDP-43 and accompanied by reduced expression of the small GTPase Ran, which is a master regulator of nuclear import required for nuclear localization of TDP-43. In addition, TDP-43 regulates Ran expression, likely via binding to its 3'-UTR. Augmented expression of Ran in progranulin-deficient neurons restores nuclear TDP-43 levels and improves their survival. Our findings establish retinal neurodegeneration as a new phenotype in progranulin-deficient FTLD, and suggest a pathological loop involving reciprocal loss of Ran and nuclear TDP-43 as an underlying mechanism
    corecore