59 research outputs found

    Silent Sky (November 6-9, 2019)

    Get PDF
    Program for Silent Sky (November 6-9, 2019). To view the photos from this production of Silent Sky , please click here

    Macrosystems ecology: Understanding ecological patterns and processes at continental scales

    Get PDF
    Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents

    NEXMIF encephalopathy:an X-linked disorder with male and female phenotypic patterns

    Get PDF
    Purpose Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. Methods Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. Results Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. Conclusion NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants

    Protocol for a randomized controlled trial of a specialized health coaching intervention to prevent excessive gestational weight gain and postpartum weight retention in women: the HIPP study

    Get PDF
    BackgroundPregnancy is a time of significant physiological and physical change for women. In particular, it is a time at which many women are at risk of gaining excessive weight. We describe the rationale and methods of the Health in Pregnancy and Post-birth (HIPP) Study, a study which aims primarily to determine the effectiveness of a specialized health coaching (HC) intervention during pregnancy, compared to education alone, in preventing excessive gestational weight gain and postpartum weight retention 12 months post birth. A secondary aim of this study is to evaluate the mechanisms by which our HC intervention impacts on weight management both during pregnancy and post birth.Methods/DesignThe randomized controlled trial will be conducted with 220 women who have a BMI &gt; 18.5 (American IOM cut-off for normal weight), are 18 years of age or older, English speaking, no history of disordered eating or diabetes and are less than 18 weeks gestation at recruitment. Women will be randomly allocated to either a specialized HC intervention group or an Education Alone group. Our specialized HC intervention has two components: (1) one-on-one sessions with a Health Coach, and (2) two by two hour educational group sessions led by a Health Coach. Women in the Education Alone group will receive two by two hour educational group sessions with no HC components. Body Mass Index, waist circumference, and psychological factors including motivation, readiness to change, symptoms of depression and anxiety, and body dissatisfaction will be assessed at baseline (14-16 weeks gestation), and again at follow-up: 32 weeks gestation, 6 weeks, 6 months and 12 months postpartum.DiscussionOur study responds to the urgent need to design effective interventions in pregnancy to prevent excessive gestational weight gain and postpartum weight retention. Our pregnancy HC intervention is novel and innovative and has been designed to be easily adopted by health professionals who work with pregnant women, such as obstetricians, midwives, allied health professionals and health psychologists. <br /

    Science on Stage

    No full text
    Lauren Gunderson, the first ever playwright in residence at the Kavli Institute for Theoretical physics at the University of Santa Barbara has authored numerous critically acclaimed plays about science. She will discuss the juxtaposition of science and the performing arts and her recent projects in this area

    Profound intellectual disability caused by homozygous TRAPPC9 pathogenic variant in a man from Malta

    No full text
    Abstract Background Intellectual disability is a complex multi‐faceted condition with diverse underlying etiologies. One rare form of intellectual disability is secondary to the loss of TRAPPC9, an activator of NF‐ÎșB and a mediator of intracellular protein processing and trafficking. TRAPPC9 deficiency has been described in 48 patients with more than 15 pathologic variants. Method Clinical evaluation, magnetic resonance imaging, and whole‐exome sequencing were used to characterize the underlying cause of absent speech, restricted/repetitive behaviors, and worsening behavioral outbursts in 27‐year‐old man from Malta. Results Magnetic Resonance Imaging showed morphologic abnormalities, including global cerebral and cerebellar hypoplasia. Genetic analysis through Whole Exome Sequencing identified a homozygous deletion (c.568_574del) in TRAPPC9 resulting in a frameshift, premature stop codon, and ultimately a truncated protein (p.Trp190Argfs*95). In this case, the pathogenic variant was homozygous, identified in both of the parents without known consanguinity. Conclusion Given the phenotype and genotype consistent with a deficiency in TRAPPC9, it is likely that this patient represents a novel case of this rare genetic syndrome. Specifically, this case, in the context of 48 total reported patients, raises questions as to the geographic origin of the pathologic variant and optimal detection and therapeutic intervention for this condition

    sequence determinants of splicing factor binding in human pre-mRNA Next-generation SELEX identifies sequence and structural Material Supplemental References http://rnajournal.cshlp.org/content/15/12/2385.full.html#ref-list-1 Next-generation SELEX identifi

    No full text
    ABSTRACT Many splicing factors interact with both mRNA and pre-mRNA. The identification of these interactions has been greatly improved by the development of in vivo cross-linking immunoprecipitation. However, the output carries a strong sampling bias in favor of RNPs that form on more abundant RNA species like mRNA. We have developed a novel in vitro approach for surveying binding on pre-mRNA, without cross-linking or sampling bias. Briefly, this approach entails specifically designed oligonucleotide pools that tile through a pre-mRNA sequence. The pool is then partitioned into bound and unbound fractions, which are quantified by a two-color microarray. We applied this approach to locating splicing factor binding sites in and around ;4000 exons. We also quantified the effect of secondary structure on binding. The method is validated by the finding that U1snRNP binds at the 59 splice site (59ss) with a specificity that is nearly identical to the splice donor motif. In agreement with prior reports, we also show that U1snRNP appears to have some affinity for intronic G triplets that are proximal to the 59ss. Both U1snRNP and the polypyrimidine tract binding protein (PTB) avoid exonic binding, and the PTB binding map shows increased enrichment at the polypyrimidine tract. For PTB, we confirm polypyrimidine specificity and are also able to identify structural determinants of PTB binding. We detect multiple binding motifs enriched in the PTB bound fraction of oligonucleotides. These motif combinations augment binding in vitro and are also enriched in the vicinity of exons that have been determined to be in vivo targets of PTB

    Next-generation SELEX identifies sequence and structural determinants of splicing factor binding in human pre-mRNA sequence

    No full text
    ABSTRACT Many splicing factors interact with both mRNA and pre-mRNA. The identification of these interactions has been greatly improved by the development of in vivo cross-linking immunoprecipitation. However, the output carries a strong sampling bias in favor of RNPs that form on more abundant RNA species like mRNA. We have developed a novel in vitro approach for surveying binding on pre-mRNA, without cross-linking or sampling bias. Briefly, this approach entails specifically designed oligonucleotide pools that tile through a pre-mRNA sequence. The pool is then partitioned into bound and unbound fractions, which are quantified by a two-color microarray. We applied this approach to locating splicing factor binding sites in and around ;4000 exons. We also quantified the effect of secondary structure on binding. The method is validated by the finding that U1snRNP binds at the 59 splice site (59ss) with a specificity that is nearly identical to the splice donor motif. In agreement with prior reports, we also show that U1snRNP appears to have some affinity for intronic G triplets that are proximal to the 59ss. Both U1snRNP and the polypyrimidine tract binding protein (PTB) avoid exonic binding, and the PTB binding map shows increased enrichment at the polypyrimidine tract. For PTB, we confirm polypyrimidine specificity and are also able to identify structural determinants of PTB binding. We detect multiple binding motifs enriched in the PTB bound fraction of oligonucleotides. These motif combinations augment binding in vitro and are also enriched in the vicinity of exons that have been determined to be in vivo targets of PTB
    • 

    corecore