234 research outputs found

    The Tully-Fisher Relation of Barred Galaxies

    Full text link
    We present new data exploring the scaling relations, such as the Tully-Fisher relation (TFR), of bright barred and unbarred galaxies. A primary motivation for this study is to establish whether barredness correlates with, and is a consequence of, virial properties of galaxies. Various lines of evidence suggest that dark matter is dominant in disks of bright unbarred galaxies at 2.2 disk scale lengths, the point of peak rotation for a pure exponential disk. We test the hypothesis that the TF plane of barred high surface brightness galaxies is offset from the mean TFR of unbarred galaxies, as might be expected if barred galaxies are ``maximal'' in their inner parts. We use existing and new TF data to search for basic structural differences between barred and unbarred galaxies. Our new data consist of 2-dimensional Halpha velocity fields derived from SparsePak integral field spectroscopy (IFS) and V,I-band CCD images collected at the WIYN Observatory for 14 strongly barred galaxies. We use WIYN/SparsePak (2-D) velocity fields to show that long-slit (1-D) spectra yield reliable circular speed measurements at or beyond 2.2 disk scale lengths, far from any influence of the bar. This enables us to consider line width measurements from extensive TF surveys which include barred and nonbarred disks and derive detailed scaling relation comparisons. We find that for a given luminosity, barred and unbarred galaxies have comparable structural and dynamical parameters, such as peak velocities, scale lengths, or colors. In particular, the location of a galaxy in the TF plane is independent of barredness. In a global dynamical sense, barred and unbarred galaxies behave similarly and are likely to have, on average, comparable fractions of luminous and dark matter at a given radius. (abridged)Comment: Accepted for publication in the ApJ (September 1, 2003 issue, v594). Appendix figures with I-band image and superimposed 2-D velocity field plus rotation curves must be downloaded separately (due to size constraints) from http://www.astro.ubc.ca/people/courteau/public/courteau03_TFbars.ps.g

    Microbial Community Structures of Novel Icelandic Hot Spring Systems Revealed by PhyloChip G3 Analysis

    Get PDF
    Microbial community profiles of recently formed hot spring systems ranging in temperatures from 57°C to 100°C and pH values from 2 to 4 in Hveragerði (Iceland) were analyzed with PhyloChip G3 technology. In total, 1173 bacterial operational taxonomic units (OTUs) spanning 576 subfamilies and 38 archaeal OTUs covering 32 subfamilies were observed. As expected, the hyperthermophilic (100°C) spring system exhibited both low microbial biomass and diversity when compared to thermophilic (60°C) springs. Ordination analysis revealed distinct bacterial and archaeal diversity in geographically distinct hot springs. Slight variations in temperature (from 57°C to 64°C) within the interconnected pools led to a marked fluctuation in microbial abundance and diversity. Correlation and PERMANOVA tests provided evidence that temperature was the key environmental factor responsible for microbial community dynamics, while pH, H_(2)S, and SO_2 influenced the abundance of specific microbial groups. When archaeal community composition was analyzed, the majority of detected OTUs correlated negatively with temperature, and few correlated positively with pH. Key Words: Microbial diversity—PhyloChip G3—Acidophilic—Thermophilic—Hot springs—Iceland. Astrobiology 14, xxx–xxx

    Nurse-Initiated Treatment Reduces Costs for Acute Asthma in a Pediatric Emergency Department

    Get PDF
    Standardized emergency department (ED) pathways can improve care delivery to children with acute asthma, though their impact on hospitalization and costs is unclear. An Acute Asthma Care Pathway (AACP) that facilitates nurse initiation of treatment was implemented at a tertiary care pediatric ED using standard quality improvement methodology. The impact of implementation was assessed using process control methodology and multivariable time series analyses between pre- and post-implementation periods. Provision of a steroid within 30 minutes and 60 minutes of arrival increased by 21 and 22 percentage points respectively, IV magnesium sulfate administration increased by 30 percentage points, the proportion hospitalized decreased from 44.8% to 32.2%, and mean direct costs per patient decreased from 2,663to2,663 to 2,303 (13.5%). In multivariable analysis, these improvements remained significant. Implementation of the AACP improved timeliness of treatment, hospitalization, and direct costs of children receiving ED treatment for acute asthma

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    Early Antiretroviral Therapy Reduces AIDS Progression/Death in Individuals with Acute Opportunistic Infections: A Multicenter Randomized Strategy Trial

    Get PDF
    Background: Optimal timing of ART initiation for individuals presenting with AIDS-related OIs has not been defined. Methods and Findings: A5164 was a randomized strategy trial of ‘‘early ART’’ - given within 14 days of starting acute OI treatment versus ‘‘deferred ART’’ - given after acute OI treatment is completed. Randomization was stratified by presenting OI and entry CD4 count. The primary week 48 endpoint was 3-level ordered categorical variable: 1. Death/AIDS progression; 2. No progression with incomplete viral suppression (ie HIV viral load (VL) [greater than or equal to] 50 copies/ml); 3. No progression with optimal viral suppression (ie HIV VL <50 copies/ml). Secondary endpoints included: AIDS progression/death; plasma HIV RNA and CD4 responses and safety parameters including IRIS. 282 subjects were evaluable; 141 per arm. Entry OIs included Pneumocytis jirovecii pneumonia 63%, cryptococcal meningitis 12%, and bacterial infections 12%. The early and deferred arms started ART a median of 12 and 45 days after start of OI treatment, respectively. The difference in the primary endpoint did not reach statistical significance: AIDS progression/death was seen in 20 (14%) vs. 34 (24%); whereas no progression but with incomplete viral suppression was seen in 54 (38%) vs. 44 (31%); and no progression with optimal viral suppression in 67 (48%) vs 63 (45%) in the early vs. deferred arm, respectively (p = 0.22). However, the early ART arm had fewer AIDS progression/deaths (OR = 0.51; 95% CI = 0.27–0.94) and a longer time to AIDS progression/death (stratified HR = 0.53; 95% CI = 0.30–0.92). The early ART had shorter time to achieving a CD4 count above 50 cells/mL (p<0.001) and no increase in adverse events. Conclusions: Early ART resulted in less AIDS progression/death with no increase in adverse events or loss of virologic response compared to deferred ART. These results support the early initiation of ART in patients presenting with acute AIDS-related OIs, absent major contraindications

    Effects of Blood Collection Conditions on Ovarian Cancer Serum Markers

    Get PDF
    Evaluating diagnostic and early detection biomarkers requires comparing serum protein concentrations among biosamples ascertained from subjects with and without cancer. Efforts are generally made to standardize blood processing and storage conditions for cases and controls, but blood sample collection conditions cannot be completely controlled. For example, blood samples from cases are often obtained from persons aware of their diagnoses, and collected after fasting or in surgery, whereas blood samples from some controls may be obtained in different conditions, such as a clinic visit. By measuring the effects of differences in collection conditions on three different markers, we investigated the potential of these effects to bias validation studies.We analyzed serum concentrations of three previously studied putative ovarian cancer serum biomarkers-CA 125, Prolactin and MIF-in healthy women, women with ovarian cancer undergoing gynecologic surgery, women undergoing surgery for benign ovary pathology, and women undergoing surgery with pathologically normal ovaries. For women undergoing surgery, a blood sample was collected either in the clinic 1 to 39 days prior to surgery, or on the day of surgery after anesthesia was administered but prior to the surgical procedure, or both. We found that one marker, prolactin, was dramatically affected by collection conditions, while CA 125 and MIF were unaffected. Prolactin levels were not different between case and control groups after accounting for the conditions of sample collection, suggesting that sample ascertainment could explain some or all of the previously reported results about its potential as a biomarker for ovarian cancer.Biomarker validation studies should use standardized collection conditions, use multiple control groups, and/or collect samples from cases prior to influence of diagnosis whenever feasible to detect and correct for potential biases associated with sample collection

    Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs

    Get PDF
    A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaskan North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24–27°C), Kuparuk (47–70°C), Sag River (80°C), and Ivishak (80–83°C) reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta) were most prominent in Schrader Bluff samples, and the combined ήD and ή13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae) and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited). Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences

    Attenuating Sulfidogenesis in a Soured Continuous Flow Column System With Perchlorate Treatment

    Get PDF
    Hydrogen sulfide production by sulfate reducing bacteria (SRB) is the primary cause of oil reservoir souring. Amending environments with chlorate or perchlorate [collectively denoted (per)chlorate] represents an emerging technology to prevent the onset of souring. Recent studies with perchlorate reducing bacteria (PRB) monocultures demonstrated that they have the innate capability to enzymatically oxidize sulfide, thus PRB may offer an effective means of reversing souring. (Per)chlorate may be effective by (i) direct toxicity to SRB; (ii) competitive exclusion of SRB by PRB; or (iii) reversal of souring through re-oxidation of sulfide by PRB. To determine if (per)chlorate could sweeten a soured column system and assign a quantitative value to each of the mechanisms we treated columns flooded with San Francisco bay water with temporally decreasing amounts (50, 25, and 12.5 mM) of (per)chlorate. Geochemistry and the microbial community structure were monitored and a reactive transport model was developed, Results were compared to columns treated with nitrate or untreated. Souring was reversed by all treatments at 50 mM but nitrate-treated columns began to re-sour when treatment concentrations decreased (25 mM). Re-souring was only observed in (per)chlorate-treated columns when concentrations were decreased to 12.5 mM and the extent of re-souring was less than the control columns. Microbial community analyses indicated treatment-specific community shifts. Nitrate treatment resulted in a distinct community enriched in genera known to perform sulfur cycling metabolisms and genera capable of nitrate reduction. (Per)chlorate treatment enriched for (per)chlorate reducing bacteria. (Per)chlorate treatments only enriched for sulfate reducing organisms when treatment levels were decreased. A reactive transport model of perchlorate treatment was developed and a baseline case simulation demonstrated that the model provided a good fit to the effluent geochemical data. Subsequent simulations teased out the relative role that each of the three perchlorate inhibition mechanisms played during different phases of the experiment. These results indicate that perchlorate addition is an effective strategy for both souring prevention and souring reversal. It provides insight into which organisms are involved, and illuminates the interactive effects of the inhibition mechanisms, further highlighting the versatility of perchlorate as a sweetening agent
    • 

    corecore