195 research outputs found

    Radiotherapy exposure directly damages the uterus and causes pregnancy loss

    Get PDF
    Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma-/-) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.</p

    Sitting time and obesity in a sample of adults from Europe and the USA

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Annals of Human Biology on 25 Sep 2016, available online: http://www.tandfonline.com/10.1080/03014460.2016.1232749.Obesity is a risk factor for many chronic diseases and the prevalence is increasing worldwide. Research suggests that sedentary behaviour (sitting) may be related to obesity.To examine the association between sitting time and obesity, while controlling for physical activity, in a large international sample.5338 adults from the UK, USA, Germany, Spain, Italy, France, Portugal, Austria and Switzerland self-reported their total daily sitting time, physical activity, age, height and weight. BMI (kg/m(2)), total physical activity (MET-minutes/week) and sitting time (hours/day) were derived. Participants were grouped into quartiles based on their daily sitting time (<4, 4 - ≤6, 6 - ≤8, and >8 hours/day) and logistic regression models explored the odds of being obese versus normal weight for each sitting time quartile.Participants in the highest sitting time quartile (≥8 hours/day) had 62% higher odds of obesity compared to participants in the lowest quartile (<4 hours/day) after adjustment for physical activity and other confounding variables (OR = 1.62, 95% CI = 1.24-2.12, p<0.01).Sitting time is associated with obesity in adults, independent of physical activity. Future research should clarify this association using objective measures of sitting time and physical activity to further inform health guidelines

    Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis Of Individual Participant Data

    Get PDF
    OBJECTIVES To assess the overall effect of vitamin D supplementation on risk of acute respiratory tract infection, and to identify factors modifying this effect. DESIGN Systematic review and meta-analysis of individual participant data (IPD) from randomised controlled trials. DATA SOURCES Medline, Embase, the Cochrane Central Register of Controlled Trials, Web of Science, ClinicalTrials.gov, and the International Standard Randomised Controlled Trials Number registry from inception to December 2015. ELIGIBILITY CRITERIA FOR STUDY SELECTION Randomised, double blind, placebo controlled trials of supplementation with vitamin D3 or vitamin D2 of any duration were eligible for inclusion if they had been approved by a research ethics committee and if data on incidence of acute respiratory tract infection were collected prospectively and prespecified as an efficacy outcome. RESULTS 25 eligible randomised controlled trials (total 11 321 participants, aged 0 to 95 years) were identified. IPD were obtained for 10 933 (96.6%) participants. Vitamin D supplementation reduced the risk of acute respiratory tract infection among all participants (adjusted odds ratio 0.88, 95% confidence interval 0.81 to 0.96; P for heterogeneity \u3c0.001). In subgroup analysis, protective effects were seen in those receiving daily or weekly vitamin D without additional bolus doses (adjusted odds ratio 0.81, 0.72 to 0.91) but not in those receiving one or more bolus doses (adjusted odds ratio 0.97, 0.86 to 1.10; P for interaction=0.05). Among those receiving daily or weekly vitamin D, protective effects were stronger in those with baseline 25-hydroxyvitamin D levels \u3c25 nmol/L (adjusted odds ratio 0.30, 0.17 to 0.53) than in those with baseline 25-hydroxyvitamin D levels ≥25 nmol/L (adjusted odds ratio 0.75, 0.60 to 0.95; P for interaction=0.006). Vitamin D did not influence the proportion of participants experiencing at least one serious adverse event (adjusted odds ratio 0.98, 0.80 to 1.20, P=0.83). The body of evidence contributing to these analyses was assessed as being of high quality. CONCLUSIONS Vitamin D supplementation was safe and it protected against acute respiratory tract infection overall. Patients who were very vitamin D deficient and those not receiving bolus doses experienced the most benefit

    Visualizing Cholesterol in the Brain by On-Tissue Derivatization and Quantitative Mass Spectrometry Imaging.

    Get PDF
    Despite being a critical molecule in the brain, mass spectrometry imaging (MSI) of cholesterol has been under-reported compared to other lipids due to the difficulty in ionizing the sterol molecule. In the present work, we have employed an on-tissue enzyme-assisted derivatization strategy to improve detection of cholesterol in brain tissue sections. We report distribution and levels of cholesterol across specific structures of the mouse brain, in a model of Niemann-Pick type C1 disease, and during brain development. MSI revealed that in the adult mouse, cholesterol is the highest in the pons and medulla and how its distribution changes during development. Cholesterol was significantly reduced in the corpus callosum and other brain regions in the Npc1 null mouse, confirming hypomyelination at the molecular level. Our study demonstrates the potential of MSI to the study of sterols in neuroscience

    LIPID MAPS: Update to databases and tools for the lipidomics community

    Get PDF
    LIPID MAPS (LIPID Metabolites and Pathways Strategy), www.lipidmaps.org, provides a systematic and standardized approach to organizing lipid structural and biochemical data. Founded 20 years ago, the LIPID MAPS nomenclature and classification has become the accepted community standard. LIPID MAPS provides databases for cataloging and identifying lipids at varying levels of characterization in addition to numerous software tools and educational resources, and became an ELIXIR-UK data resource in 2020. This paper describes the expansion of existing databases in LIPID MAPS, including richer metadata with literature provenance, taxonomic data and improved interoperability to facilitate FAIR compliance. A joint project funded by ELIXIR-UK, in collaboration with WikiPathways, curates and hosts pathway data, and annotates lipids in the context of their biochemical pathways. Updated features of the search infrastructure are described along with implementation of programmatic access via API and SPARQL. New lipid-specific databases have been developed and provision of lipidomics tools to the community has been updated. Training and engagement have been expanded with webinars, podcasts and an online training school

    Specialized Learning in Antlions (Neuroptera: Myrmeleontidae), Pit-Digging Predators, Shortens Vulnerable Larval Stage

    Get PDF
    Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas “median survival time,” the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical “learning curve” but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning

    Hypoxia-inducible factor-1α expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas

    Get PDF
    Hypoxia-inducible factor-1 (HIF-1)α expression was studied in the gastric carcinogenesis sequence and as a prognostic factor in surgically resected gastric and gastro-oesophageal junction tumours. Protein expression was examined using immunohistochemistry on formalin-fixed biopsies of normal mucosa (n=20), Helicobacter pylori associated gastritis (n=24), intestinal metaplasia (n=24), dysplasia (n=12) and intestinal (n=19) and diffuse (n=21) adenocarcinoma. The relationship between HIF-1α expression and prognosis was assessed in resection specimens from 177 patients with gastric and gastro-oesophageal junction adenocarcinoma. Hypoxia-inducible factor-1α expression was not observed in normal gastric mucosa but increased in density (P<0.01) and intensity (P<0.01) with progression from H. pylori-associated gastritis, intestinal metaplasia, dysplasia to adenocarcinoma. The pattern of staining in the resection specimens was focally positive in 49 (28%) and at the invasive tumour edge in 41 (23%). Invasive edge expression was associated with lymph node metastases (P=0.034), advanced TNM stage (P=0.001) and was an adverse prognostic factor for cancer-specific survival (P=0.019). In univariate analysis and in comparison with tumours not expressing HIF-1α, invasive edge staining was associated with a hazard ratio of 1.6 (95% CI 1.0−2.5) and focally positive staining a hazard ratio of 0.7 (95% CI 0.5−1.2). Hypoxia-inducible factor-1α lost prognostic significance in multivariate analysis. The results suggest HIF-1α is involved in gastric carcinogenesis and disease progression, but is only a weak prognostic factor for survival

    The Ascent of the Abundant: How Mutational Networks Constrain Evolution

    Get PDF
    Evolution by natural selection is fundamentally shaped by the fitness landscapes in which it occurs. Yet fitness landscapes are vast and complex, and thus we know relatively little about the long-range constraints they impose on evolutionary dynamics. Here, we exhaustively survey the structural landscapes of RNA molecules of lengths 12 to 18 nucleotides, and develop a network model to describe the relationship between sequence and structure. We find that phenotype abundance—the number of genotypes producing a particular phenotype—varies in a predictable manner and critically influences evolutionary dynamics. A study of naturally occurring functional RNA molecules using a new structural statistic suggests that these molecules are biased toward abundant phenotypes. This supports an “ascent of the abundant” hypothesis, in which evolution yields abundant phenotypes even when they are not the most fit

    Freezing of gait and fall detection in Parkinson’s disease using wearable sensors:a systematic review

    Get PDF
    Despite the large number of studies that have investigated the use of wearable sensors to detect gait disturbances such as Freezing of gait (FOG) and falls, there is little consensus regarding appropriate methodologies for how to optimally apply such devices. Here, an overview of the use of wearable systems to assess FOG and falls in Parkinson’s disease (PD) and validation performance is presented. A systematic search in the PubMed and Web of Science databases was performed using a group of concept key words. The final search was performed in January 2017, and articles were selected based upon a set of eligibility criteria. In total, 27 articles were selected. Of those, 23 related to FOG and 4 to falls. FOG studies were performed in either laboratory or home settings, with sample sizes ranging from 1 PD up to 48 PD presenting Hoehn and Yahr stage from 2 to 4. The shin was the most common sensor location and accelerometer was the most frequently used sensor type. Validity measures ranged from 73–100% for sensitivity and 67–100% for specificity. Falls and fall risk studies were all home-based, including samples sizes of 1 PD up to 107 PD, mostly using one sensor containing accelerometers, worn at various body locations. Despite the promising validation initiatives reported in these studies, they were all performed in relatively small sample sizes, and there was a significant variability in outcomes measured and results reported. Given these limitations, the validation of sensor-derived assessments of PD features would benefit from more focused research efforts, increased collaboration among researchers, aligning data collection protocols, and sharing data sets
    corecore