54 research outputs found

    Occupancy maps of 208 chromatin-associated proteins in one human cell type

    Get PDF
    Transcription factors are DNA-binding proteins that have key roles in gene regulation. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP–seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium

    Effects of ecosystem protection on scallop populations within a community-led temperate marine reserve

    Get PDF
    This study investigated the effects of a newly established, fully protected marine reserve on benthic habitats and two commercially valuable species of scallop in Lamlash Bay, Isle of Arran, United Kingdom. Annual dive surveys from 2010 to 2013 showed the abundance of juvenile scallops to be significantly greater within the marine reserve than outside. Generalised linear models revealed this trend to be significantly related to the greater presence of macroalgae and hydroids growing within the boundaries of the reserve. These results suggest that structurally complex habitats growing within the reserve have substantially increased spat settlement and/or survival. The density of adult king scallops declined threefold with increasing distance from the boundaries of the reserve, indicating possible evidence of spillover or reduced fishing effort directly outside and around the marine reserve. However, there was no difference in the mean density of adult scallops between the reserve and outside. Finally, the mean age, size, and reproductive and exploitable biomass of king scallops were all significantly greater within the reserve. In contrast to king scallops, the population dynamics of queen scallops (Aequipecten opercularis) fluctuated randomly over the survey period and showed little difference between the reserve and outside. Overall, this study is consistent with the hypothesis that marine reserves can encourage the recovery of seafloor habitats, which, in turn, can benefit populations of commercially exploited species, emphasising the importance of marine reserves in the ecosystem-based management of fisheries

    Occupancy maps of 208 chromatin-associated proteins in one human cell type

    Get PDF
    Transcription factors are DNA-binding proteins that have key roles in gene regulation. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP–seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium

    Localisation of nursery areas based on comparative analyses of the horizontal and vertical distribution patterns of juvenile Baltic cod (Gadus morhua)

    Get PDF
    Knowledge of the spatial distribution of juvenile cod is essential for obtaining precise recruitment data to conduct sustainable management of the eastern and western Baltic cod stocks. In this study, the horizontal and vertical distribution and density patterns of settled juvenile 0- and 1-group Baltic cod are determined, and their nursery areas are localised according to the environmental factors affecting them. Comparative statistical analyses of biological, hydrographic and hydroacoustic data are carried out based on standard ICES demersal trawl surveys and special integrated trawl and acoustic research surveys. Horizontal distribution maps for the 2001-2010 cohorts of juvenile cod are further generated by applying a statistical log-Gaussian Cox process model to the standard trawl survey data. The analyses indicate size-dependent horizontal and distinct vertical and diurnal distribution patterns related to the seabed topography, water layer depth, and the presence of hydrographic frontal zones (pycnoclines) as well as intraspecific patterns in relation to the presence of adult cod. The extent of the nursery areas also depends on the cod year class strength. Juvenile cod (≥3 cm) are present in all areas of the central Baltic Sea (CBS), showing broad dispersal. However, their highest density in the Baltic Basins is found at localities with a 40-70 m bottom depth in waters with oxygen concentrations above 2 ml O₂.l⁻¹ and temperatures above 5°C. The smallest juveniles are also found in deep sea localities down to a 100 m depth and at oxygen concentrations between 2-4 ml O₂.l⁻¹. The vertical, diurnally stratified and repeated trawling and hydroacoustic target strength-depth distributions obtained from the special surveys show juvenile cod concentrations in frontal zone water layers (pycnocline). However, the analyses indicate that in the CBS, juvenile cod of all sizes do not appear to aggregate in dense schooling patterns, which differs from what has been reported from the North Sea

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake

    No full text
    Melanocortin-3/4 receptor ligands administered to the caudal brain stem potently modulate food intake by changing meal size. The origin of the endogenous ligands is unclear, because the arcuate nucleus of the hypothalamus and the nucleus of the solitary tract (NTS) harbor populations of proopiomelanocortin (POMC)-expressing neurons. Here we demonstrate that activation of hypothalamic POMC neurons leads to suppression of food intake and that this suppression is prevented by administration of a melanocortin-3/4 receptor antagonist to the NTS and its vicinity. Bilateral leptin injections into the rat arcuate nucleus produced long-lasting suppression of meal size and total chow intake. These effects were significantly blunted by injection of SHU-9119 into the fourth ventricle, although SHU-9119 increased meal size and food intake during the first, but not the second, 14-h observation period. Leptin effects on meal size and food intake were abolished throughout the 40-h observation period by injection of SHU-9119 into the NTS at a dose that by itself had no effect. Neuron-specific tracing from the arcuate nucleus with a Cre-inducible tract-tracing adenovirus in POMC-Cre mice showed the presence of labeled axons in the NTS. Furthermore, density of α-melanocyte-stimulating hormone-immunoreactive axon profiles throughout the NTS was decreased by ∼70% after complete surgical transection of connections with the forebrain in the chronic decerebrate rat model. The results further support the existence of POMC projections from the hypothalamus to the NTS and suggest that these projections have a functional role in the control of food intake

    Growth and adaptation of Zika virus in mammalian and mosquito cells.

    No full text
    The recent emergence of Zika virus (ZIKV) in the Americas coincident with increased caseloads of microcephalic infants and Guillain-Barre syndrome has prompted a flurry of research on ZIKV. Much of the research is difficult to compare or repeat because individual laboratories use different virus isolates, growth conditions, and quantitative assays. Here we obtained three readily available contemporary ZIKV isolates and the prototype Ugandan isolate. We generated stocks of each on Vero mammalian cells (ZIKVmam) and C6/36 mosquito cells (ZIKVmos), determined titers by different assays side-by-side, compared growth characteristics using one-step and multi-step growth curves on Vero and C6/36 cells, and examined plaque phenotype. ZIKV titers consistently peaked earlier on Vero cells than on C6/36 cells. Contemporary ZIKV isolates reached peak titer most quickly in a multi-step growth curve when the amplifying cell line was the same as the titering cell line (e.g., ZIKVmam titered on Vero cells). Growth of ZIKVmam on mosquito cells was particularly delayed. These data suggest that the ability to infect and/or replicate in insect cells is limited after growth in mammalian cells. In addition, ZIKVmos typically had smaller, more homogenous plaques than ZIKVmam in a standard plaque assay. We hypothesized that the plaque size difference represented early adaptation to growth in mammalian cells. We plaque purified representative-sized plaques from ZIKVmos and ZIKVmam. ZIKVmos isolates maintained the initial phenotype while plaques from ZIKVmam isolates became larger with passaging. Our results underscore the importance of the cells used to produce viral stocks and the potential for adaptation with minimal cell passages. In addition, these studies provide a foundation to compare current and emerging ZIKV isolates in vitro and in vivo
    corecore