30 research outputs found

    Net ecosystem production and carbon dioxide fluxes in the Scheldt estuarine plume

    Get PDF
    Background A time series of 4 consecutive years of measurements of the partial pressure of CO2 (pCO2) in the Scheldt estuarine plume is used here to estimate net ecosystem production (NEP). Results NEP in the Scheldt estuarine plume is estimated from the temporal changes of dissolved inorganic carbon (DIC). The strong seasonal variations of NEP are consistent with previous reports on organic carbon dynamics in the area. These variations are related to successive phytoplankton blooms that partly feed seasonally variable heterotrophy the rest of the year. On an annual time scale the Scheldt estuarine plume behaves as a net heterotrophic system sustained with organic carbon input from the Scheldt inner estuary and the Belgian coast. During one of the years of the time-series the estuarine plume behaved annually as a net autotrophic system. This anomalous ecosystem metabolic behaviour seemed to result from a combination of bottom-up factors affecting the spring phytoplankton bloom (increased nutrient delivery and more favourable incoming light conditions). This net autotrophy seemed to lead to a transient aa accumulation of organic carbon, most probably in the sediments, that fed a stronger heterotrophy the following year. Conclusion The present work highlights the potential of using pCO2 data to derive detailed seasonal estimates of NEP in highly dynamic coastal environments. These can be used to determine potential inter-annual variability of NEP due to natural climatic oscillations or due to changes in anthropogenic impacts.EUROTROPH - CARBOOCEAN - CANOPY - SOLAS.BE - COMETS - BELCOLOUR

    Mechanisms controlling the air-sea CO2 flux in the North Sea

    Get PDF
    The mechanisms driving the air–sea exchange of carbon dioxide (CO2CO2) in the North Sea are investigated using the three-dimensional coupled physical–biogeochemical model ECOHAM (ECOlogical-model, HAMburg). We validate our simulations using field data for the years 2001–2002 and identify the controls of the air–sea CO2CO2 flux for two locations representative for the North Sea's biogeochemical provinces. In the seasonally stratified northern region, net CO2CO2 uptake is high (View the MathML source2.06molm-2a-1) due to high net community production (NCP) in the surface water. Overflow production releasing semi-labile dissolved organic carbon needs to be considered for a realistic simulation of the low dissolved inorganic carbon (DIC) concentrations observed during summer. This biologically driven carbon drawdown outcompetes the temperature-driven rise in CO2CO2 partial pressure (pCO2pCO2) during the productive season. In contrast, the permanently mixed southern region is a weak net CO2CO2 source (View the MathML source0.78molm-2a-1). NCP is generally low except for the spring bloom because remineralization parallels primary production. Here, the pCO2pCO2 appears to be controlled by temperature

    Coccolithophorid calcium carbonate dissolution in surface waters

    Full text link
    The role of calcifying organisms in the ocean biogeochemistry has been receiving increasing attention since CO2-related global change issues such as ocean acidification were pointed out by the scientific community. The implications of changing oceanic pH in modifying ecosystems dominated by planktonic calcifiers have been shown by mesocosm and laboratory experiments based on CO2 manipulations. The major concern of such experiments focussed on variations in the rates of ecosystem primary production and calcification due to changes in algal physiology or specific composition. Our results, from an interdisciplinary survey of coccolithophore-dominated blooms in the northern Bay of Biscay (NE Atlantic), suggest that biogenic calcite dissolution is occurring in the photic zone where surface waters are oversaturated with respect to calcite. The dissolution of CaCO3 in surface waters, evidenced by scanning electron microscopy observations, has an impact on the preservation and export of carbon in coccolithophore-dominated ecosystems and on the exchange of CO2 across the ocean-atmosphere interface. Both aspects of suspended calcite concentration reduction in natural environments (lower rates of production or dissolution) could be considered as a perturbation of the oceanic carbon cycle. We aim at presenting here a biogeochemical description of processes, including integrated primary production, calcification, and parameters such as transparent exopolymer particles concentration and particulate inorganic carbon profiles, during field studies. A mechanism for calcite dissolution, based on biological activity in microenvironments (including grazing, bacterial respiration and DMS production) is presented as a conceptual model in coccolithophore blooms

    Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB4001, doi:10.1029/2006GB002825.New observations from the North Sea, a NW European shelf sea, show that between 2001 and 2005 the CO2 partial pressure (pCO2) in surface waters rose by 22 μatm, thus faster than atmospheric pCO2, which in the same period rose approximately 11 μatm. The surprisingly rapid decline in air-sea partial pressure difference (ΔpCO2) is primarily a response to an elevated water column inventory of dissolved inorganic carbon (DIC), which, in turn, reflects mostly anthropogenic CO2 input rather than natural interannual variability. The resulting decline in the buffering capacity of the inorganic carbonate system (increasing Revelle factor) sets up a theoretically predicted feedback loop whereby the invasion of anthropogenic CO2 reduces the ocean's ability to uptake additional CO2. Model simulations for the North Atlantic Ocean and thermodynamic principles reveal that this feedback should be stronger, at present, in colder midlatitude and subpolar waters because of the lower present-day buffer capacity and elevated DIC levels driven either by northward advected surface water and/or excess local air-sea CO2 uptake. This buffer capacity feedback mechanism helps to explain at least part of the observed trend of decreasing air-sea ΔpCO2 over time as reported in several other recent North Atlantic studies.S. Doney and I. Lima were supported by NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G)

    Biogeochemistry of the Tana estuary and delta (northern Kenya)

    Full text link
    The estuarine mixing zone of the Tana River (northern Kenya) and an extensive deltaic area just south of the estuary were sampled in April 2004 with the aim of identifying the distribution, sources, and processing of particulate and dissolved organic carbon (POC, DOC) and inorganic carbon (DIC). C4 inputs from the catchment contributed ,50% to the POC pool in the Tana River and estuary, and in the mangrove creek water column and intertidal sediments. The d13C values of DOC, however, were typically much more negative than that of POC, indicating a substantially higher contribution by C3 and/or mangrove-derived carbon in the DOC pool. The undersaturation of O2, high pCO2, and the nonconservative nature of DIC and d13CDIC suggest a strongly heterotrophic water column, particularly in the freshwater part of the Tana and in the tidal creeks in the delta, where high additional inputs of organic matter were observed. However, some of these sites showed d18ODO signatures lower than the atmospheric equilibrium (i.e., +24.2%) indicative of significant O2 production by photosynthesis. Therefore, the heterotrophic signature in the water column is likely the result of a strong interaction with the large intertidal areas, whereby respiratory activity in sediments and in the overlying water column during tidal inundation leave a marked signature on the water column. This is confirmed by the covariation between salinity-normalized total alkalinity and DIC, whose slope indicates an important role for anaerobic diagenetic processes. If our data are representative for other large river systems in the region, current estimates are likely to underestimate suspended matter and both inorganic and organic C fluxes to the Indian Ocean from tropical east Africa

    Assessment of the processes controlling the seasonal variations of dissolved inorganic carbon in the North Sea

    Get PDF
    We used a seasonal North Sea data set comprising dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), and inorganic nutrients to assess the abiotic and biological processes governing the monthly variations of DIC. During winter, advection and air–sea exchange of CO2 control and increase the DIC content in the surface and deeper layers of the northern and central North Sea, with the atmosphere supplying CO2 on the order of 0.2 mol C m22 month21 to these areas. From February to July, net community production (NCP) controls the seasonal variations of DIC in the surface waters of the entire North Sea, with a net uptake ranging from 0.5 to 1.4 mol C m22 month21. During the August–December period, NCP controls the seasonal variations of DIC in the southern North Sea, with a net release ranging from 0.5 to 0.8 mol C m22 month21. Similarly, during the April–August period in the deeper layer of the northern North Sea, the NCP was the main factor controlling DIC concentrations, with a net release ranging from 0.5 to 5.5 mol C m22 month21. In the surface layer of the North Sea, NCP on the basis of DIC was 4.3 6 0.4 mol C m22 yr21, whereas, NCP on the basis of nitrate was 1.6 6 0.2 mol C m22 yr21. Under nutrient-depleted conditions, preferential recycling (extracellular) of nutrients and intracellular mechanisms occurred and were responsible for the non-Redfield uptake of DIC versus nitrate and phosphate
    corecore