2,857 research outputs found

    Methanol Dehydrogenation on Pt Electrodes : Active Sites and Role of Adsorbed Spectators Revealed through Time-Resolved ATR-SEIRAS

    Get PDF
    ACKNOWLEDGMENT L.P.-M. acknowledges a doctoral scholarship within the Leverhulme Centre for Doctoral Training in Sustainable Production of Chemicals and Materials (Grant DS-2017-073).Peer reviewedPostprin

    Childhood hospitalisation and related deaths in Hanoi, Vietnam: a tertiary hospital database analysis from 2007 to 2014

    Get PDF
    To describe hospital admission and emergency visit rates and potential risk factors of prolonged hospitalisation and death among children in Hanoi.; A retrospective study reviewed 212 216 hospitalisation records of children (aged 0-17) who attended the Vietnam National Children's Hospital in Hanoi between 2007 and 2014. Four indicators were analysed and reported: (1) rate of emergency hospital visits, (2) rate of hospitalisation, (3) length of hospital stay and (4) number of deaths. The risk of prolonged hospitalisation was investigated using Cox proportion hazard, and the risk of death was investigated through logistic regressions.; During 2007-2014, the average annual rate of emergency visits was 2.2 per 1000 children and the rate of hospital admissions was 13.8 per 1000 children. The annual rates for infants increased significantly by 3.9 per 1000 children during 2012-2014 for emergency visits and 25.1 per 1000 children during 2009-2014 for hospital admissions. Digestive diseases (32.0%) and injuries (30.2%) were common causes of emergency visits, whereas respiratory diseases (37.7%) and bacterial and parasitic infections (19.8%) accounted for most hospital admissions. Patients with mental and behavioural disorders remained in the hospital the longest (median=12 days). Morbidities related to the perinatal period dominated mortality causes (32.5% of deaths among those admitted to the hospital. Among the respiratory diseases, pneumonia was the leading cause of both prolonged hospitalisation and death.; Preventable health problems, such as common bacterial infections and respiratory diseases, were the primary causes of hospital admissions in Vietnam

    Health impact assessment of transport policies in Rotterdam:Decrease of total traffic and increase of electric car use

    Get PDF
    BACKGROUND: Green house gas (GHG) mitigation policies can be evaluated by showing their co-benefits to health.METHOD: Health Impact Assessment (HIA) was used to quantify co-benefits of GHG mitigation policies in Rotterdam. The effects of two separate interventions (10% reduction of private vehicle kilometers and a share of 50% electric-powered private vehicle kilometers) on particulate matter (PM2.5), elemental carbon (EC) and noise (engine noise and tyre noise) were assessed using Years of Life Lost (YLL) and Years Lived with Disability (YLD). The baseline was 2010 and the end of the assessment 2020.RESULTS: The intervention aimed at reducing traffic is associated with a decreased exposure to noise resulting in a reduction of 21 (confidence interval (CI): 11-129) YLDs due to annoyance and 35 (CI: 20-51) YLDs due to sleep disturbance for the population per year. The effects of 50% electric-powered car use are slightly higher with a reduction of 26 (CI: 13-116) and 41 (CI: 24-60) YLDs, respectively. The two interventions have marginal effects on air pollution, because already implemented traffic policies will reduce PM2.5 and EC by around 40% and 60% respectively, from 2010 to 2020.DISCUSSION: The evaluation of planned interventions, related to climate change policies, targeting only the transport sector can result in small co-benefits for health, if the analysis is limited to air pollution and noise. This urges to expand the analysis by including other impacts, e.g. physical activity and well-being, as a necessary step to better understanding consequences of interventions and carefully orienting resources useful to build knowledge to improve public health.</p

    Raman Spectrum of the Organic-Inorganic Halide Perovskite CH3NH3PbI3 from First Principles and High-Resolution Low-Temperature Raman Measurements

    Get PDF
    We investigate the Raman spectrum of the low-temperature orthorhombic phase of the organic-inorganic halide perovskite CH3NH3PbI3, by combining first-principles calculations with high-resolution low-temperature Raman measurements. We find good agreement between theory and experiment, and successfully assign each of the Raman peaks to the underlying vibrational modes. In the low-frequency spectral range (below 60 cm1) we assign the prominent Raman signals at 26, 32, 42 and 49 cm1 to the Pb-I-Pb bending modes with either Ag or B2g symmetry, and the signal at 58 cm1 to the librational mode of the organic cation. Owing to their significant intensity, we propose that these peaks can serve as clear markers of the vibrations of the [PbI3] network and of the CH3NH+ 3 cations in this perovskite, respectively. In particular, the ratios of the intensities of these peaks might be used to monitor possible deviations from the ideal stoichiometry of CH3NH3PbI3

    Interventions associated with brown adipose tissue activation and the impact on energy expenditure and weight loss: A systematic review

    Get PDF
    BackgroundBrown adipose tissue (BAT) plays a role in modulating energy expenditure. People with obesity have been shown to have reduced activation of BAT. Agents such as β-agonists, capsinoids, thyroid hormone, sildenafil, caffeine, or cold exposure may lead to activation of BAT in humans, potentially modulating metabolism to promote weight loss.MethodsWe systematically searched electronic databases for clinical trials testing the effect of these agents and cold exposure on energy expenditure/thermogenesis and the extent to which they may impact weight loss in adults.ResultsA total of 695 studies from PubMed, Web of Science, and Medline electronic databases were identified. After the removal of duplicates and further evaluation, 47 clinical trials were analyzed. We observed significant heterogeneity in the duration of interventions and the metrics utilized to estimate thermogenesis/energy expenditure. Changes observed in energy expenditure do not correlate with major weight changes with different interventions commonly known to stimulate thermogenesis. Even though cold exposure appears to consistently activate BAT and induce thermogenesis, studies are small, and it appears to be an unlikely sustainable therapy to combat obesity. Most studies were small and potential risks associated with known side effects of some agents such as β-agonists (tachycardia), sibutramine (hypertension, tachycardia), thyroid hormone (arrhythmias) cannot be fully evaluated from these small trials.ConclusionThough the impact of BAT activation and associated increases in energy expenditure on clinically meaningful weight loss is a topic of great interest, further data is needed to determine long-term feasibility and efficacy

    The Chandra Multi-Wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-ray Selected AGN

    Get PDF
    From optical spectroscopy of X-ray sources observed as part of ChaMP, we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow up using the FLWO, SAAO, WIYN, CTIO, KPNO, Magellan, MMT and Gemini telescopes, and from archival SDSS spectroscopy. We classify the optical counterparts as 50% BLAGN, 16% NELG, 14% ALG, and 20% stars. We detect QSOs out to z~5.5 and galaxies out to z~3. We have compiled extensive photometry from X-ray to radio bands. Together with our spectroscopic information, this enables us to derive detailed SEDs for our extragalactic sources. We fit a variety of templates to determine bolometric luminosities, and to constrain AGN and starburst components where both are present. While ~58% of X-ray Seyferts require a starburst event to fit observed photometry only 26% of the X-ray QSO population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z>1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star-formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 XBONG, 78 z>3 X-ray sources and 8 Type-2 QSO candidates. Also we have identified the highest redshift (z=5.4135) X-ray selected QSO with optical spectroscopy.Comment: 17 pages, 16 figures, accepted for publication in ApJS. Full data table and README file can be found online at http://hea-www.harvard.edu/~pgreen/Papers.htm

    Rapid pathway prototyping and engineering using <i>in vitro</i> and <i>in vivo</i> synthetic genome SCRaMbLE-in methods

    Get PDF
    AbstractExogenous pathway optimization and chassis engineering are two crucial methods for heterologous pathway expression. The two methods are normally carried out step-wise and in a trial-and-error manner. Here we report a recombinase-based combinatorial method (termed “SCRaMbLE-in”) to tackle both challenges simultaneously. SCRaMbLE-in includes an in vitro recombinase toolkit to rapidly prototype and diversify gene expression at the pathway level and an in vivo genome reshuffling system to integrate assembled pathways into the synthetic yeast genome while combinatorially causing massive genome rearrangements in the host chassis. A set of loxP mutant pairs was identified to maximize the efficiency of the in vitro diversification. Exemplar pathways of β-carotene and violacein were successfully assembled, diversified, and integrated using this SCRaMbLE-in method. High-throughput sequencing was performed on selected engineered strains to reveal the resulting genotype-to-phenotype relationships. The SCRaMbLE-in method proves to be a rapid, efficient, and universal method to fast track the cycle of engineering biology.</jats:p

    Isomeric O-methyl cannabidiolquinones with dual BACH1/NRF2 activity

    Get PDF
    Oxidative stress and inflammation in the brain are two key hallmarks of neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's and multiple sclerosis. The axis NRF2-BACH1 has anti-inflammatory and anti-oxidant properties that could be exploited pharmacologically to obtain neuroprotective effects. Activation of NRF2 or inhibition of BACH1 are, individually, promising therapeutic approaches for NDs. Compounds with dual activity as NRF2 activators and BACH1 inhibitors, could therefore potentially provide a more robust antioxidant and anti-inflammatory effects, with an overall better neuroprotective outcome. The phytocannabinoid cannabidiol (CBD) inhibits BACH1 but lacks significant NRF2 activating properties. Based on this scaffold, we have developed a novel CBD derivative that is highly effective at both inhibiting BACH1 and activating NRF2. This new CBD derivative provides neuroprotection in cell models of relevance to Huntington's disease, setting the basis for further developments in vivo

    Single-cell immune profiling reveals thymus-seeding populations, T cell commitment, and multilineage development in the human thymus

    Get PDF
    T cell development in the mouse thymus has been studied extensively, but less is known regarding T cell development in the human thymus. We used a combination of single-cell techniques and functional assays to perform deep immune profiling of human T cell development, focusing on the initial stages of prelineage commitment. We identified three thymus-seeding progenitor populations that also have counterparts in the bone marrow. In addition, we found that the human thymus physiologically supports the development of monocytes, dendritic cells, and NK cells, as well as limited development of B cells. These results are an important step toward monitoring and guiding regenerative therapies in patients after hematopoietic stem cell transplantation
    corecore