86 research outputs found

    Sensitivity and specificity of the finger tapping task for the detection of psychogenic movement disorders

    Get PDF
    Psychogenic movement disorders (PMD) represent a diagnostically challenging group of patients in movement disorders. Finger tapping tests (FTT) have been used in neuropsychiatric evaluations to identify psychogenic conditions, but their use in movement disorders has been limited to the quantification of upper extremity disability in idiopathic Parkinson disease (IPD). We evaluated the ability of the FTT to objectively identify PMD by screening 195 individuals from a movement disorder clinic with IPD, dystonia, essential tremor, or PMD and compared them to 130 normal adults. All subjects performed six-30 second trials using alternate hands. We compared mean FTT score and the coefficient of variation between diagnostic groups. FTT scores in IPD were inversely correlated with Hoehn and Yahr stage (p < .001) and the United Parkinson Disease Rating Scale III (motor) subscale (p < .001). FTT scores were significantly lower in PMD (mean = 41.72) when compared to the other diagnostic groups after controlling for age. The coefficient of variation was not significantly different between diagnostic groups. ROC analysis identified a cutoff FTT ratio of 0.670 or less was 89.1% specific and 76.9% sensitive for the diagnosis of PMD. We conclude the FTT can provide supportive evidence for the diagnosis of PMD

    A Model for Professionalism Evaluation: Using the RISE Assessment Tool Across DPT Didactic and Integrated Clinical Education

    Get PDF
    Purpose: There are limited options for professionalism evaluation during short term clinical experiences in physical therapy education. The purpose of this report is to describe the development of a new assessment tool (RISE) [Respect for Others, Integrity & Compliance, Self-Awareness & Commitment to Development, and Engagement & Work Ethic] as part of a longitudinal professional development model in the DPT didactic curriculum (RISE-SA) and integrated clinical education (RISE-CI). Primary goals of the RISE were to clearly define evaluation criteria, offer quick formative feedback, promote communication between clinical and academic faculty, and create objective professionalism assessment criteria. Method: The RISE assessment tool serves as a key element of the USF professional development curriculum that bridges academic and clinical education. Throughout the curriculum students use the RISE to refine professional development plans based on self-assessment and feedback from academic faculty, professionalism coaches, and clinical instructors. Results: Approximately 250 students, 25 clinical instructors, and 10 professionalism coaches successfully implemented the RISE Tool as part of the educational model. Preliminary feedback from students, academic faculty, and clinical instructors (n = 21) indicated that the RISE is time-efficient, easy to use, and helpful in categorizing positive and negative professional behaviors. Conclusions: Clinical instructors appreciated the time-efficient digital platform application of the RISE (about 1 minute to complete during integrated clinical education). A shared framework for professionalism facilitated communication of professionalism expectations between academic faculty, clinical instructors, and students. Further research is needed to evaluate the potential usefulness of RISE for full-time clinical education and for remediation of professionalism lapses

    Melt Property Variation In GeSe2-As2Se3-PbSe Glass Ceramics For Infrared Gradient Refractive Index (GRIN) Applications

    Get PDF
    Melt size-dependent physical property variation is examined in a multicomponent GeSe2-As2Se3-PbSe chalcogenide glass developed for gradient refractive index applications. The impact of melting conditions on small (40 g) prototype laboratory-scale melts extended to commercially relevant melt sizes (1.325 kg) have been studied and the role of thermal history variation on physical and optical property evolution in parent glass, the glass\u27 crystallization behavior and post heat-treated glass ceramics, is quantified. As-melted glass morphology, optical homogeneity and heat treatment-induced microstructure following a fixed, two-step nucleation and growth protocol exhibit marked variation with melt size. These attributes are shown to impact crystallization behavior (growth rates, resulting crystalline phase formation) and induced effective refractive index change, neff, in the resulting optical nanocomposite. The magnitude of these changes is discussed based on thermal history related melt conditions

    Ab-initio Carbon Capture in Open-Site Metal Organic Frameworks

    Get PDF
    During the formation of metal–organic frameworks (MOFs), metal centres can coordinate with the intended organic linkers, but also with solvent molecules. In this case, subsequent activation by removal of the solvent molecules creates unsaturated ‘open’ metal sites known to have a strong affinity for CO2 molecules, but their interactions are still poorly understood. Common force fields typically underestimate by as much as two orders of magnitude the adsorption of CO2 in open-site Mg-MOF-74, which has emerged as a promising MOF for CO2 capture. Here we present a systematic procedure to generate force fields using high-level quantum chemical calculations. Monte Carlo simulations based on an ab initio force field generated for CO2 in Mg-MOF-74 shed some light on the interpretation of thermodynamic data from flue gas in this material. The force field describes accurately the chemistry of the open metal sites, and is transferable to other structures. This approach may serve in molecular simulations in general and in the study of fluid–solid interactions

    Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker

    Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN)

    Get PDF
    The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual\u27s point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of \u27sporadic\u27 AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore