120 research outputs found
Toward accurate high-throughput SNP genotyping in the presence of inherited copy number variation
<p>Abstract</p> <p>Background</p> <p>The recent discovery of widespread copy number variation in humans has forced a shift away from the assumption of two copies per locus per cell throughout the autosomal genome. In particular, a SNP site can no longer always be accurately assigned one of three genotypes in an individual. In the presence of copy number variability, the individual may theoretically harbor any number of copies of each of the two SNP alleles.</p> <p>Results</p> <p>To address this issue, we have developed a method to infer a "generalized genotype" from raw SNP microarray data. Here we apply our approach to data from 48 individuals and uncover thousands of aberrant SNPs, most in regions that were previously unreported as copy number variants. We show that our allele-specific copy numbers follow Mendelian inheritance patterns that would be obscured in the absence of SNP allele information. The interplay between duplication and point mutation in our data shed light on the relative frequencies of these events in human history, showing that at least some of the duplication events were recurrent.</p> <p>Conclusion</p> <p>This new multi-allelic view of SNPs has a complicated role in disease association studies, and further work will be necessary in order to accurately assess its importance. Software to perform generalized genotyping from SNP array data is freely available online <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>.</p
Genotyping Cancer-Associated Genes in Chordoma Identifies Mutations in Oncogenes and Areas of Chromosomal Loss Involving CDKN2A, PTEN, and SMARCB1
The molecular mechanisms underlying chordoma pathogenesis are unknown. We therefore sought to identify novel mutations to better understand chordoma biology and to potentially identify therapeutic targets. Given the relatively high costs of whole genome sequencing, we performed a focused genetic analysis using matrix-assisted laser desorption/ionization-time of flight mass spectrometer (Sequenom iPLEX genotyping). We tested 865 hotspot mutations in 111 oncogenes and selected tumor suppressor genes (OncoMap v. 3.0) of 45 human chordoma tumor samples. Of the analyzed samples, seven were identified with at least one mutation. Six of these were from fresh frozen samples, and one was from a paraffin embedded sample. These observations were validated using an independent platform using homogeneous mass extend MALDI-TOF (Sequenom hME Genotyping). These genetic alterations include: ALK (A877S), CTNNB1 (T41A), NRAS (Q61R), PIK3CA (E545K), PTEN (R130), CDKN2A (R58*), and SMARCB1 (R40*). This study reports on the largest comprehensive mutational analysis of chordomas performed to date. To focus on mutations that have the greatest chance of clinical relevance, we tested only oncogenes and tumor suppressor genes that have been previously implicated in the tumorigenesis of more common malignancies. We identified rare genetic changes that may have functional significance to the underlying biology and potential therapeutics for chordomas. Mutations in CDKN2A and PTEN occurred in areas of chromosomal copy loss. When this data is paired with the studies showing 18 of 21 chordoma samples displaying copy loss at the locus for CDKN2A, 17 of 21 chordoma samples displaying copy loss at PTEN, and 3 of 4 chordoma samples displaying deletion at the SMARCB1 locus, we can infer that a loss of heterozygosity at these three loci may play a significant role in chordoma pathogenesis
Recommended from our members
High-Throughput Genotyping in Metastatic Esophageal Squamous Cell Carcinoma Identifies Phosphoinositide-3-Kinase and BRAF Mutations
Background: Given the high incidence of metastatic esophageal squamous cell carcinoma, especially in Asia, we screened for the presence of somatic mutations using OncoMap platform with the aim of defining subsets of patients who may be potential candidate for targeted therapy. Methods and Materials We analyzed 87 tissue specimens obtained from 80 patients who were pathologically confirmed with esophageal squamous cell carcinoma and received 5-fluoropyrimidine/platinum-based chemotherapy. OncoMap 4.0, a mass-spectrometry based assay, was used to interrogate 471 oncogenic mutations in 41 commonly mutated genes. Tumor specimens were prepared from primary cancer sites in 70 patients and from metastatic sites in 17 patients. In order to test the concordance between primary and metastatic sites from the patient for mutations, we analyzed 7 paired (primary-metastatic) specimens. All specimens were formalin-fixed paraffin embedded tissues and tumor content was >70%. Results: In total, we have detected 20 hotspot mutations out of 80 patients screened. The most frequent mutation was PIK3CA mutation (four E545K, five H1047R and one H1047L) (N = 10, 11.5%) followed by MLH1 V384D (N = 7, 8.0%), TP53 (R306, R175H and R273C) (N = 3, 3.5%), BRAF V600E (N = 1, 1.2%), CTNNB1 D32N (N = 1, 1.2%), and EGFR P733L (N = 1, 1.2%). Distributions of somatic mutations were not different according to anatomic sites of esophageal cancer (cervical/upper, mid, lower). In addition, there was no difference in frequency of mutations between primary-metastasis paired samples. Conclusions: Our study led to the detection of potentially druggable mutations in esophageal SCC which may guide novel therapies in small subsets of esophageal cancer patients
Recommended from our members
High-Throughput Mutation Profiling Identifies Frequent Somatic Mutations in Advanced Gastric Adenocarcinoma
Background: Gastric cancer is one of the leading cancer types in incidence and mortality, especially in Asia. In order to improve survival, identification of a catalogue of molecular alterations underlying gastric cancer is a critical step for developing and designing genome-directed therapies. Methodology/Principal Findings The Center for Cancer Genome Discovery (CCGD) at the Dana-Farber Cancer Institute (DFCI) has adapted a high-throughput genotyping platform to determine the mutation status of a large panel of known cancer genes. The mutation detection platform, termed OncoMap v4, interrogates 474 “hotspot” mutations in 41 genes that are relevant for cancer. We performed OncoMap v4 in formalin-fixed paraffin-embedded (FFPE) tissue specimens from 237 gastric adenocarcinomas. Using OncoMap v4, we found that 34 (14.4%) of 237 gastric cancer patients harbored mutations. Among mutations we screened, PIK3CA mutations were the most frequent (5.1%) followed by p53 (4.6%), APC (2.5%), STK11 (2.1%), CTNNB1 (1.7%), and CDKN2A (0.8%). Six samples harbored concomitant somatic mutations. Mutations of CTNNB1 were significantly more frequent in EBV-associated gastric carcinoma (P = 0.046). Our study led to the detection of potentially druggable mutations in gastric cancer which may guide novel therapies in subsets of gastric cancer patients. Conclusions/Significance: Using high throughput mutation screening platform, we identified that PIK3CA mutations were the most frequently observed target for gastric adenocarcinoma
High Throughput Interrogation of Somatic Mutations in High Grade Serous Cancer of the Ovary
BACKGROUND:Epithelial ovarian cancer is the most lethal of all gynecologic malignancies, and high grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer. The objective of this study was to determine the frequency and types of point somatic mutations in HGSC using a mutation detection protocol called OncoMap that employs mass spectrometric-based genotyping technology. METHODOLOGY/PRINCIPAL FINDINGS:The Center for Cancer Genome Discovery (CCGD) Program at the Dana-Farber Cancer Institute (DFCI) has adapted a high-throughput genotyping platform to determine the mutation status of a large panel of known cancer genes. The mutation detection protocol, termed OncoMap has been expanded to detect more than 1000 mutations in 112 oncogenes in formalin-fixed paraffin-embedded (FFPE) tissue samples. We performed OncoMap on a set of 203 FFPE advanced staged HGSC specimens. We isolated genomic DNA from these samples, and after a battery of quality assurance tests, ran each of these samples on the OncoMap v3 platform. 56% (113/203) tumor samples harbored candidate mutations. Sixty-five samples had single mutations (32%) while the remaining samples had ≥ 2 mutations (24%). 196 candidate mutation calls were made in 50 genes. The most common somatic oncogene mutations were found in EGFR, KRAS, PDGRFα, KIT, and PIK3CA. Other mutations found in additional genes were found at lower frequencies (<3%). CONCLUSIONS/SIGNIFICANCE:Sequenom analysis using OncoMap on DNA extracted from FFPE ovarian cancer samples is feasible and leads to the detection of potentially druggable mutations. Screening HGSC for somatic mutations in oncogenes may lead to additional therapies for this patient population
Recommended from our members
Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations
Meningiomas are the most common primary nervous system tumor. The tumor suppressor NF2 is disrupted in approximately half of meningiomas1 but the complete spectrum of genetic changes remains undefined. We performed whole-genome or whole-exome sequencing on 17 meningiomas and focused sequencing on an additional 48 tumors to identify and validate somatic genetic alterations. Most meningiomas exhibited simple genomes, with fewer mutations, rearrangements, and copy-number alterations than reported in other adult tumors. However, several meningiomas harbored more complex patterns of copy-number changes and rearrangements including one tumor with chromothripsis. We confirmed focal NF2 inactivation in 43% of tumors and found alterations in epigenetic modifiers among an additional 8% of tumors. A subset of meningiomas lacking NF2 alterations harbored recurrent oncogenic mutations in AKT1 (E17K) and SMO (W535L) and exhibited immunohistochemical evidence of activation of their pathways. These mutations were present in therapeutically challenging tumors of the skull base and higher grade. These results begin to define the spectrum of genetic alterations in meningiomas and identify potential therapeutic targets
Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032
Blocking oncogenic signaling induced by the BRAFV600E mutation is a promising approach for melanoma treatment. We tested the anti-tumor effects of a specific inhibitor of Raf protein kinases, PLX4032/RG7204, in melanoma cell lines. PLX4032 decreased signaling through the MAPK pathway only in cell lines with the BRAFV600E mutation. Seven out of 10 BRAFV600E mutant cell lines displayed sensitivity based on cell viability assays and three were resistant at concentrations up to 10 μM. Among the sensitive cell lines, four were highly sensitive with IC50 values below 1 μM, and three were moderately sensitive with IC50 values between 1 and 10 μM. There was evidence of MAPK pathway inhibition and cell cycle arrest in both sensitive and resistant cell lines. Genomic analysis by sequencing, genotyping of close to 400 oncogeninc mutations by mass spectrometry, and SNP arrays demonstrated no major differences in BRAF locus amplification or in other oncogenic events between sensitive and resistant cell lines. However, metabolic tracer uptake studies demonstrated that sensitive cell lines had a more profound inhibition of FDG uptake upon exposure to PLX4032 than resistant cell lines. In conclusion, BRAFV600E mutant melanoma cell lines displayed a range of sensitivities to PLX4032 and metabolic imaging using PET probes can be used to assess sensitivity
Recommended from our members
Colorectal Cancers from Distinct Ancestral Populations Show Variations in BRAF Mutation Frequency
It has been demonstrated for some cancers that the frequency of somatic oncogenic mutations may vary in ancestral populations. To determine whether key driver alterations might occur at different frequencies in colorectal cancer, we applied a high-throughput genotyping platform (OncoMap) to query 385 mutations across 33 known cancer genes in colorectal cancer DNA from 83 Asian, 149 Black and 195 White patients. We found that Asian patients had fewer canonical oncogenic mutations in the genes tested (60% vs Black 79% (P = 0.011) and White 77% (P = 0.015)), and that BRAF mutations occurred at a higher frequency in White patients (17% vs Asian 4% (P = 0.004) and Black 7% (P = 0.014)). These results suggest that the use of genomic approaches to elucidate the different ancestral determinants harbored by patient populations may help to more precisely and effectively treat colorectal cancer
Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer
Purpose: Few patients with metastatic triple-negative breast cancer (mTNBC) benefit from immune checkpoint inhibitors (ICI). On the basis of immunotherapy response correlates in other cancers, we evaluated whether high tumor mutational burden (TMB) ≥10 nonsynonymous mutations/megabase and PTEN alterations, defined as nonsynonymous mutations or 1 or 2 copy deletions, were associated with clinical benefit to anti-PD-1/L1 therapy in mTNBC. Experimental design: We identified patients with mTNBC, who consented to targeted DNA sequencing and were treated with ICIs on clinical trials between April 2014 and January 2019 at Dana-Farber Cancer Institute (Boston, MA). Objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were correlated with tumor genomic features. Results: Sixty-two women received anti-PD-1/L1 inhibitors alone (23%) or combined with targeted therapy (19%) or chemotherapy (58%). High TMB (18%) was associated with significantly longer PFS (12.5 vs. 3.7 months; P = 0.04), while PTEN alterations (29%) were associated with significantly lower ORR (6% vs. 48%; P = 0.01), shorter PFS (2.3 vs. 6.1 months; P = 0.01), and shorter OS (9.7 vs. 20.5 months; P = 0.02). Multivariate analyses confirmed that these associations were independent of performance status, prior lines of therapy, therapy regimen, and visceral metastases. The survival associations were additionally independent of PD-L1 in patients with known PD-L1 and were not found in mTNBC cohorts treated with chemotherapy (n = 90) and non-ICI regimens (n = 169). Conclusions: Among patients with mTNBC treated with anti-PD-1/L1 therapies, high TMB and PTEN alterations were associated with longer and shorter survival, respectively. These observations warrant validation in larger datasets
- …