12 research outputs found

    Truncation of TRIM5 in the <i>Feliformia</i> explains the absence of retroviral restriction in cells of the domestic cat

    Get PDF
    TRIM5[alpha] mediates a potent retroviral restriction phenotype in diverse mammalian species. Here, we identify a TRIM5 transcript in cat cells with a truncated B30.2 capsid binding domain and ablated restrictive function which, remarkably, is conserved across the &lt;i&gt;Feliformia&lt;/i&gt;. Cat TRIM5 displayed no restriction activity, but ectopic expression conferred a dominant negative effect against human TRIM5[alpha]. Our findings explain the absence of retroviral restriction in cat cells and suggest that disruption of the TRIM5 locus has arisen independently at least twice in the &lt;i&gt;Carnivora&lt;/i&gt;, with implications concerning the evolution of the host and pathogen in this taxon

    Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity

    Get PDF
    TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5α but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients.Peer reviewe

    Independent evolution of an antiviral TRIMCyp in rhesus macaques

    No full text
    The antiretroviral restriction factor TRIM5 has recently emerged as an important mediator of innate immunity and species-specific inhibition of retroviral replication in mammals. Selection pressure from pathogenic infection has driven rapid evolution of TRIM5 genes, leading to the antiviral specificities we see today. Remarkably, the New World owl monkey (Aotus trivirgatus) encodes a TRIM5 protein in which the antiviral determinants in the B30.2 domain have been replaced by cyclophilin A (CypA) encoded by a retrotransposed cDNA. The owl monkey TRIMCyp protein restricts infection by a subset of lentiviruses that recruit CypA to their capsids, including HIV-1 and feline immunodeficiency virus. Here, we show that the Old World monkey, rhesus macaque (Macaca mulatta), also encodes a TRIMCyp protein that has arisen independently from that in owl monkeys. The rhesus TRIMCyp is encoded by a single, but common, allele (Mamu7) of the rhesus TRIM5 gene, among at least six further alleles that encode full-length TRIM5 proteins with no homology to CypA. The antiviral specificity of the rhesus TRIMCyp is distinct, restricting infection of HIV-2 and feline immunodeficiency virus but not HIV-1. Restriction by rhesus TRIMCyp is before reverse transcription and inhibited by blocking CypA binding, with cyclosporine A, or by mutation of the capsid CypA binding site. These observations suggest a mechanism of restriction that is conserved between TRIMCyp proteins. The lack of activity against HIV-1 suggests that Mamu7 homozygous animals will be null for TRIM5-mediated restriction of HIV-1 and could contribute to improved animal models for HIV/AIDS

    Isolation of an Active Lv1 Gene from Cattle Indicates that Tripartite Motif Protein-Mediated Innate Immunity to Retroviral Infection Is Widespread among Mammals

    Get PDF
    Lv1/TRIM5α (tripartite motif 5α) has recently emerged as an important factor influencing species-specific permissivity to retroviral infection in a range of primates, including humans. Old World monkey TRIM5α blocks human immunodeficiency virus type 1 (HIV-1) infectivity, and the human and New World monkey TRIM5α proteins are inactive against HIV-1 but active against divergent murine (N-tropic murine leukemia virus [MLV-N]) and simian (simian immunodeficiency virus from rhesus macaque [SIVmac]) retroviruses, respectively. Here we demonstrate antiviral activity of the first nonprimate TRIM protein, from cattle, active against divergent retroviruses, including HIV-1. The number of closely related human TRIM sequences makes assignment of the bovine sequence as a TRIM5α ortholog uncertain, and we therefore refer to it as bovine Lv1. Bovine Lv1 is closely related to primate TRIM5α proteins in the N-terminal RING and B-box 2 domains but significantly less homologous in the C-terminal B30.2 domain, particularly in the region shown to influence antiviral specificity. Intriguingly, some viruses restricted by bovine Lv1, including HIV-1 and MLV-N, are unable to synthesize viral DNA by reverse transcription, whereas restricted HIV-2 makes normal amounts of DNA. The data support the conclusion that TRIM protein-mediated restriction of retroviral infection is a more common attribute of mammals than previously appreciated

    Cyclophilin A Levels Dictate Infection Efficiency of Human Immunodeficiency Virus Type 1 Capsid Escape Mutants A92E and G94D â–¿

    No full text
    Cyclophilin A (CypA) is an important human immunodeficiency virus type 1 (HIV-1) cofactor in human cells. HIV-1 A92E and G94D capsid escape mutants arise during CypA inhibition and in certain cell lines are dependent on CypA inhibition. Here we show that dependence on CypA inhibition is due to high CypA levels. Restricted HIV-1 is stable, and remarkably, restriction is augmented by arresting cell division. Nuclear entry is not inhibited. We propose that high CypA levels and capsid mutations combine to disturb uncoating, leading to poor infectivity, particularly in arrested cells. Our data suggest a role for CypA in uncoating the core of HIV-1 to facilitate integration

    Active site remodeling switches HIV specificity of antiretroviral TRIMCyp

    No full text
    TRIMCyps are primate antiretroviral proteins that potently inhibit HIV replication. Here we describe how rhesus macaque TRIMCyp (RhTC) has evolved to target and restrict HIV-2. We show that the ancestral cyclophilin A (CypA) domain of RhTC targets HIV-2 capsid with weak affinity, which is strongly increased in RhTC by two mutations (D66N and R69H) at the expense of HIV-1 binding. These mutations disrupt a constraining intramolecular interaction in CypA, triggering the complete restructuring (&#62;16 A) of an active site loop. This new configuration discriminates between divergent HIV-1 and HIV-2 loop conformations mediated by capsid residue 88. Viral sensitivity to RhTC restriction can be conferred or abolished by mutating position 88. Furthermore, position 88 determines the susceptibility of naturally occurring HIV-1 sequences to restriction. Our results reveal the complex molecular, structural and thermodynamic changes that underlie the ongoing evolutionary race between virus and host
    corecore