2,380 research outputs found

    Can custom 3D printed implants successfully reconstruct massive acetabular defects? A 3D-CT assessment

    Get PDF
    We report on the accuracy, measured with three-dimensional (3D) computed tomography (CT) postoperatively, in positioning custom 3D printed titanium components in patients with large acetabular defects. Twenty patients (13 females and 7 males) received custom-made acetabular implants between 2016 and 2018; the mean age was 66 years (SD = 11.6) and their mean body mass index was 28 (SD = 6.1). The median time to follow up was 25.5 months, range: 12 to 40 months. We describe a comparison method that uses the 3D models of CT-generated preoperative plans and the postoperative CT scans to quantify the discrepancy between planned and achieved component positions. Our primary outcome measures were the 3D-CT-measured difference between planned and achieved a component position in six degrees of freedom: center of rotation (CoR), component rotation, inclination (INC), and version (VER) of the cup. Our secondary outcome measures were: Oxford hip score, walking status, and complication rate. All components (100%) were positioned within 10 mm of planned CoR (in the three planes). Eighteen (95%) components were not rotated by more than 10° compared to the plan. Eleven (58%) components were positioned within 5° of planned cup angle (INC and VER). To date one complication has occurred, a periprosthetic fracture. This is the largest study in which postoperative 3D-CT measurements and clinical outcomes of custom-made acetabular components have been assessed. Accurate pre-op planning and the adoption of custom 3D printed implants show promising results in complex hip revision surgery

    Subsea ice-bearing permafrost on the U.S. Beaufort Margin : 2. Borehole constraints

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 4333–4353, doi:10.1002/2016GC006582.Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ∼500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.2017-05-0

    Subsea ice-bearing permafrost on the U.S. Beaufort Margin : 1. Minimum seaward extent defined from multichannel seismic reflection data

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 4354–4365, doi:10.1002/2016GC006584.Subsea ice-bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (∼100 m isobath). This study uses a compilation of stacking velocity analyses from ∼100,000 line-km of industry-collected multichannel seismic reflection data acquired over 57,000 km2 of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two-way travel time range from 1475 to 3110 m s−1. The monotonic, cross-shore pattern in velocity distribution suggests that the seaward extent of continuous IBPF is within 37 km of the modern shoreline at water depths < 25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin-scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf.DOE NETL/NRC Methane Hydrate Fellowship Grant Number: DE-FC26-05NT42248; USGS–DOE Interagency Agreements Grant Number: DE-FE000291 and 00234952017-05-0

    Reconstruction of acetabular defects greater than Paprosky type 3B: the importance of functional imaging

    Get PDF
    BACKGROUND: 3D Surgical planning has become a key tool in complex hip revision surgery. The restoration of centre of rotation (CoR) of the hips and leg length (LL) are key factors in achieving good clinical outcome. Pelvic imaging is the gold standard for planning and assessment of LL. We aimed to better understand if 3D planning is effective at equalising LL when large acetabular defects are present. MATERIALS AND METHODS: This was a prospective case study of 25 patients. We report the analysis of pre-operative LL status and planned LL restoration measured on CT, in relation to the achieved LL measured post-operatively in functional, weight bearing position. Our primary objective was the assessment of restoration of CoR as well as the anatomical and functional LL using biplanar full-length standing low-dose radiographs; our secondary objective was to evaluate the clinical outcome. RESULTS: Pre-operative intra-pelvic discrepancy between right and left leg was a mean of 28 mm (SD 17.99, min = 3, max = 60 mm). Post-operatively, the difference between right and left vertical femoral offset (VFO), or CoR discrepancy, was of 7.4 mm on average, significantly different from the functional LL discrepancy (median = 15 mm), p = 0.0024. Anatomical LLD was a median of 15 mm. In one case there was transient foot drop, one dislocation occurred 6 months post-operatively and was treated by closed reduction, none of the patients had had revision surgery at the time of writing. Mean oxford hip score at latest follow up was 32.1/48. DISCUSSION: This is the first study to investigate limb length discrepancy in functional position after reconstruction of large acetabular defects. We observed that VFO is not an optimal surrogate for LL when there is significant bone loss leading to length inequality, fixed flexion of the knee and abduction deformity. CONCLUSIONS: Although challenging, LLD and gait abnormalities can be greatly improved with the aid of an accurate surgical planning. Surgeons and engineers should consider the integration of EOS imaging in surgical planning of reconstruction of large acetabular defects

    Magnetic Resonance Imaging of the Hips of Runners Before and After Their First Marathon Run: Effect of Training for and Completing a Marathon

    Get PDF
    Background: No studies have focused on magnetic resonance imaging (MRI) of the hips of marathoners, despite the popularity and injury risks of marathon running. / Purpose: To understand the effect of preparing for and completing a marathon run (42 km) on runners’ hip joints by comparing MRI findings before and after their first marathon. / Study Design: Case-control study; Level of evidence, 3. / Methods: A total of 28 healthy adults (14 males, 14 females; mean age, 32.4 years) were recruited after registering for their first marathon. They underwent 3-T MRI of both hips at 16 weeks before (time point 1) and 2 weeks after the marathon (time point 2). After the first MRI, 21 runners completed the standardized, 4 month--long training program and the marathon; 7 runners did not complete the training or the marathon. Specialist musculoskeletal radiologists reported and graded the hip joint structures using validated scoring systems. Participants completed the Hip disability and Osteoarthritis Outcome Score (HOOS) at both imaging time points. / Results: At time point 1, MRI abnormalities of the hip joint were seen in 90% of participants and were located in at least 1 of these areas: labrum (29%), articular cartilage (7%), subchondral bone marrow (14%), tendons (17%), ligaments (14%), and muscles (31% had moderate muscle atrophy). At time point 2, only 2 of the 42 hips showed new findings: a small area of mild bone marrow edema appearance (nonweightbearing area of the hip and not attributable to running). There was no significant difference in HOOS between the 2 time points. Only 1 participant did not finish the training because of hip symptoms and thus did not run the marathon; however, symptoms resolved before the MRI at time point 2. Six other participants discontinued their training because of non–hip related issues: a knee injury, skin disease, a family bereavement, Achilles tendon injury, illness unrelated to training, and a foot injury unrelated to training. / Conclusion: Runners who completed a 4-month beginner training program before their first marathon run, plus the race itself, showed no hip damage on 3-T MRI scans

    The in vivo location of edge-wear in hip arthroplasties : combining pre-revision 3D CT imaging with retrieval analysis

    Get PDF
    AIMS: Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. METHODS: 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. RESULTS: Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. CONCLUSION: The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639-649

    Retrieval evidence of impingement at the third articulation in contemporary dual mobility cups for total hip arthroplasty

    Get PDF
    PURPOSE: We aimed to assess polyethylene liners of retrieved hips of one design of a dual mobility (DM) cup liner and two designs of femoral stems to better understand the role of femoral stem design on polyethylene impingement. METHODS: This was a case-control study involving 70 retrieved highly cross-linked polyethylene (X3) liners used with ABGII (n = 35) and Rejuvenate (n = 35) stems (Stryker). All polyethylene liners were assessed for evidence of rim deformation and the damage quantified using metrology methods. RESULTS: A total of 80% of polyethylene liners paired with ABGII necks had macroscopic evidence of neck impingement resulting in a raised lip whilst 23% of liners paired with Rejuvenate necks had evidence of a raised lip (p < 0.0001). The height of the raised rims of the DM cups paired with ABGII necks had a median (range) of 139 μm (72-255). The height of the raised rims of the DM cups paired with Rejuvenate necks had a median (range) of 52 μm (45-90) (p < 0.0001). CONCLUSION: Our new findings from retrieved dual mobility bearings showed that polyethylene liner rim deformation resulting from impingement with the femoral neck occurs in early in-human function, is circumferential in distribution, and is affected by the stem neck design. We recommend the use of highly polished and non-edged neck designs when used in conjunction with DM cups

    The effect of FTO variation on increased osteoarthritis risk is mediated through body mass index : a mendelian randomisation study

    Get PDF
    Objective: Variation in the fat mass and obesity-associated (FTO) gene influences susceptibility to obesity. A variant in the FTO gene has been implicated in genetic risk to osteoarthritis (OA). We examined the role of the FTO polymorphism rs8044769 in risk of knee and hip OA in cases and controls incorporating body mass index (BMI) information. Methods: 5409 knee OA patients, 4355 hip OA patients and up to 5362 healthy controls from 7 independent cohorts from the UK and Australia were genotyped for rs8044769. The association of the FTO variant with OA was investigated in case/control analyses with and without BMI adjustment and in analyses matched for BMI category. A mendelian randomisation approach was employed using the FTO variant as the instrumental variable to evaluate the role of overweight on OA. Results: In the meta-analysis of all overweight (BMI≥25) samples versus normal-weight controls irrespective of OA status the association of rs8044769 with overweight is highly significant (OR[CIs] for allele G=1.14 [01.08 to 1.19], p=7.5×10−7). A significant association with knee OA is present in the analysis without BMI adjustment (OR[CIs]=1.08[1.02 to 1.14], p=0.009) but the signal fully attenuates after BMI adjustment (OR[CIs]=0.99[0.93 to 1.05], p=0.666). We observe no evidence for association in the BMI-matched meta-analyses. Using mendelian randomisation approaches we confirm the causal role of overweight on OA. Conclusions: Our data highlight the contribution of genetic risk to overweight in defining risk to OA but the association is exclusively mediated by the effect on BMI. This is consistent with what is known of the biology of the FTO gene and supports the causative role of high BMI in OA
    • …
    corecore