61 research outputs found

    G2P1A0H1 (GRAVID 40-41 MINGGU), INPARTU KALA 1 FASE LATEN, HIPERTENSI GESTASIONAL + JANIN TUNGGAL HIDUP INTRAUTERINE, PRESENTASI KEPALA

    Get PDF
    Gangguan hipertensi dalam kehamilan termasuk hipertensi kronis dengan atau tanpa preeklamsia/eklampsia, hipertensi gestasional, sindrom HELLP, dan preeklamsia dengan atau tanpa gejala berat atau eklampsia, merupakan risiko morbiditas yang signifikan bagi ibu dan janin. Hipertensi gestasional didefinisikan sebagai tekanan darah sistolik >140 mm Hg atau tekanan darah diastolik >90 mm Hg. Pasien didiagnosis hipertensi gestasional karena rujukan dari Puskesmas dengan tekanan darah tinggi yaitu 142/98 mmHg. Pada pemeriksaan tekanan darah didapatkan tekanan darah pasien yaitu 150/110 mmHg

    Identification of plant genes putatively involved in the perception of fungal ergosterol‐squalene

    Get PDF
    [EN] Trichoderma biocontrol strains establish a complex network of interactions with plants, in which diverse fungal molecules are involved in the recognition of these fungi as nonpathogenic organisms. These molecules act as microbial-associated molecular patterns that trigger plant responses. Previous studies have reported the importance of ergosterol produced by Trichoderma spp. for the ability of these fungi to induce plant growth and defenses. In addition, squalene, a sterol biosynthetic intermediate, seems to play an important role in these interactions. Here, we analyzed the effect of different concentrations of ergosterol and squalene on tomato (Solanum lycopersicum) growth and on the transcription level of defense- and growth-related genes. We used an RNA-seq strategy to identify several tomato genes encoding predicted pattern recognition receptor proteins or WRKY transcription factors, both of which are putatively involved in the perception and response to ergosterol and squalene. Finally, an analysis of Arabidopsis thaliana mutants lacking the genes homologous to these tomato candidates led to the identification of a WRKY40 transcription factor that negatively regulates salicylic acid-related genes and positively regulates ethylene- and jasmonate-related genes in the presence of ergosterol and squaleneSIThis work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO-AGL2015–70671-C2-2-R and MICINN-RTI2018–099600-B-I00 to S.G.), and also by the Junta de Castilla y León (Spain) (LE251P18). L. Lindo was granted a fellowship by the University of León (Spain

    Requirement of Two Acyltransferases for 4-O-Acylation during Biosynthesis of Harzianum A, an Antifungal Trichothecene Produced by Trichoderma arundinaceum

    Get PDF
    Trichothecenes are sesquiterpenoid toxins produced by multiple fungi, including plant pathogens, entomopathogens, and saprotrophs. Most of these fungi have the acyltransferase-encoding gene tri18. Even though its function has not been determined, tri18 is predicted to be involved in trichothecene biosynthesis because of its pattern of expression and its location near other trichothecene biosynthetic genes. Here, molecular genetic, precursor feeding, and analytical chemistry experiments indicate that in the saprotroph Trichoderma arundinaceum the tri18-encoded acyltransferase (TRI18) and a previously characterized acyltransferase (TRI3) are required for conversion of the trichothecene biosynthetic intermediate trichodermol to harzianum A, an antifungal trichothecene analog with an octa-2,4,6-trienedioyl acyl group. On the basis of the results, we propose that TRI3 catalyzes trichothecene 4-O-acetylation, and subsequently, TRI18 catalyzes replacement of the resulting acetyl group with octa-2,4,6-trienedioyl to form harzianum A. Thus, the findings provide evidence for a previously unrecognized two-step acylation process during trichothecene biosynthesis in T. arundinaceum and possibly other fungiSIThe Spanish Ministry of Economy and Competitiveness supported this work (MINECO-AGL2015-70671-C2-2-R to S.G.), and the University of León granted L.L. a fellowshi

    Identification of polyketide synthase genes required for aspinolide biosynthesis in Trichoderma arundinaceum

    Get PDF
    https://link.springer.com/article/10.1007/s00253-022-12182-9[EN] The fungus Trichoderma arundinaceum exhibits biological control activity against crop diseases caused by other fungi. Two mechanisms that likely contribute to this activity are upregulation of plant defenses and production of two types of antifungal secondary metabolites: the sesquiterpenoid harzianum A (HA) and the polyketide-derived aspinolides. The goal of the current study was to identify aspinolide biosynthetic genes as part of an effort to understand how these metabolites contribute to the biological control activity of T. arundinaceum. Comparative genomics identified two polyketide synthase genes (asp1 and asp2) that occur in T. arundinaceum and Aspergillus ochraceus, which also produces aspinolides. Gene deletion and biochemical analyses in T. arundinaceum indicated that both genes are required for aspinolide production: asp2 for formation of a 10-member lactone ring and asp1 for formation of a butenoyl subsituent at position 8 of the lactone ring. Gene expression and comparative genomics analyses indicated that asp1 and asp2 are located within a gene cluster that occurs in both T. arundinaceum and A. ochraceus. A survey of genome sequences representing 35 phylogenetically diverse Trichoderma species revealed that intact homologs of the cluster occurred in only two other species, which also produced aspinolides. An asp2 mutant inhibited fungal growth more than the wild type, but an asp1 mutant did not, and the greater inhibition by the asp2 mutant coincided with increased HA production. These findings indicate that asp1 and asp2 are aspinolide biosynthetic genes and that loss of either aspinolide or HA production in T. arundinaceum can be accompanied by increased production of the other metabolite(s).SIPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Effect of Farnesol in Trichoderma Physiology and in Fungal–Plant Interaction

    Get PDF
    [EN] Farnesol is an isoprenoid intermediate in the mevalonate (MVA) pathway and is produced by the dephosphorylation of farnesyl diphosphate. Farnesol plays a central role in cell growth and differentiation, controls production of ubiquinone and ergosterol, and participates in the regulation of filamentation and biofilm formation. Despite these important functions, studies of farnesol in filamentous fungi are limited, and information on its effects on antifungal and/or biocontrol activity is scarce. In the present article, we identified the Trichoderma harzianum gene dpp1, encoding a diacylglycerol pyrophosphatase that catalyzes production of farnesol from farnesol diphosphate. We analyzed the function of dpp1 to address the importance of farnesol in Trichoderma physiology and ecology. Overexpression of dpp1 in T. harzianum caused an expected increase in farnesol production as well as a marked change in squalene and ergosterol levels, but overexpression did not affect antifungal activity. In interaction with plants, a dpp1-overexpressing transformant acted as a sensitizing agent in that it up-regulated expression of plant defense salicylate-related genes in the presence of a fungal plant pathogen. In addition, toxicity of farnesol on Trichoderma and plants was examined. Finally, a phylogenetic study of dpp1 was performed to understand its evolutionary history as a primary metabolite gene. This article represents a step forward in the acquisition of knowledge on the role of farnesol in fungal physiology and in fungus-environment interactionsSIThis research was funded by the Spanish I+D+i Grants AGL2012-40041-C02-02, AGL2015-70671-C2-2-R, RTI2018-099600-B-I00 and PID2021-123874OB-I00, financed by the MCIN/ AEI/10.13039/501100011033. GC-H was awarded with a Grant from the Ministry of Education, Culture, and Sport (Spain) (Grant number FPU15/04681). NM-R was awarded with a Grant from the Junta de Castilla y León (Spain) (ORDEN EDU/875/2021, 13 July 2021

    Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi

    Get PDF
    [EN] Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungiSISG received funding from the Spanish Ministry of Economy and Competitiveness (grant number MINECO-AGL2015-70671-C2-2-R). TL received funding from the National Institute of Agricultural Sciences, Rural Development Administration (grant number PJ00843203). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Distribution, Function, and Evolution of a Gene Essential for Trichothecene Toxin Biosynthesis in Trichoderma

    Get PDF
    [EN] Trichothecenes are terpenoid toxins produced by species in 10 fungal genera, including species of Trichoderma. The trichothecene biosynthetic gene (tri) cluster typically includes the tri5 gene, which encodes a terpene synthase that catalyzes formation of trichodiene, the parent compound of all trichothecenes. The two Trichoderma species, Trichoderma arundinaceum and T. brevicompactum, that have been examined are unique in that tri5 is located outside the tri cluster in a genomic region that does not include other known tri genes. In the current study, analysis of 35 species representing a wide range of the phylogenetic diversity of Trichoderma revealed that 22 species had tri5, but only 13 species had both tri5 and the tri cluster. tri5 was not located in the cluster in any species. Using complementation analysis of a T. arundinaceum tri5 deletion mutant, we demonstrated that some tri5 homologs from species that lack a tri cluster are functional, but others are not. Phylogenetic analyses suggest that Trichoderma tri5 was under positive selection following its divergence from homologs in other fungi but before Trichoderma species began diverging from one another. We propose two models to explain these diverse observations. One model proposes that the location of tri5 outside the tri cluster resulted from loss of tri5 from the cluster in an ancestral species followed by reacquisition via horizontal transfer. The other model proposes that in species that have a functional tri5 but lack the tri cluster, trichodiene production provides a competitive advantage.S

    Describing current use, barriers, and facilitators of patient portal messaging for research recruitment: Perspectives from study teams and patients at one institution

    Get PDF
    Abstract Introduction: The electronic health record (EHR) and patient portal are used increasingly for clinical research, including patient portal recruitment messaging (PPRM). Use of PPRM has grown rapidly; however, best practices are still developing. In this study, we examined the use of PPRM at our institution and conducted qualitative interviews among study teams and patients to understand experiences and preferences for PPRM. Methods: We identified study teams that sent PPRMs and patients that received PPRMs in a 60-day period. We characterized these studies and patients, in addition to the patients’ interactions with the PPRMs (e.g., viewed, responded). From these groups, we recruited study team members and patients for semi-structured interviews. A pragmatic qualitative inquiry framework was used by interviewers. Interviews were audio-recorded and analyzed using a rapid qualitative analysis exploratory approach. Results: Across ten studies, 35,037 PPRMs were sent, 33% were viewed, and 17% were responded to. Interaction rates varied across demographic groups. Six study team members completed interviews and described PPRM as an efficient and helpful recruitment method. Twenty-eight patients completed interviews. They were supportive of receiving PPRMs, particularly when the PPRM was relevant to their health. Patients indicated that providing more information in the PPRM would be helpful, in addition to options to set personalized preferences. Conclusions: PPRM is an efficient recruitment method for study teams and is acceptable to patients. Engagement with PPRMs varies across demographic groups, which should be considered during recruitment planning. Additional research is needed to evaluate and implement recommended changes by study teams and patients
    corecore