23 research outputs found

    Illuminating the deleterious effects of light at night

    Get PDF
    Technological advances, while providing many benefits, often create circumstances that differ from the conditions in which we evolved. With the wide-spread adoption of electrical lighting during the 20th century, humans became exposed to bright and unnatural light at night for the first time in their evolutionary history. Electrical lighting has led to the wide-scale practice of 24-hour shift-work and has meant that what were once just “daytime” activities now run throughout the night; in many ways Western society now functions on a 24-hour schedule. Recent research suggests that this gain in freedom to function throughout the night may also come with significant repercussions. Disruption of our naturally evolved light and dark cycles can result in a wide range of physiological and behavioral changes with potentially serious medical implications. In this article we will discuss several mechanisms through which light at night may exert its effects on cancer, mood, and obesity, as well as potential ways to ameliorate the impact of light at night

    Central IKKβ inhibition prevents air pollution mediated peripheral inflammation and exaggeration of type II diabetes

    Get PDF
    Abstract Background Prior experimental and epidemiologic data support a link between exposure to fine ambient particulate matter (<2.5 μm in aerodynamic diameter, PM2.5) and development of insulin resistance/Type II diabetes mellitus (Type II DM). We investigated the role of hypothalamic inflammation in PM2.5-mediated diabetes development. Methods KKay mice, a genetically susceptible model of Type II DM, were assigned to either concentrated PM2.5 or filtered air (FA) for 4–8 weeks via a versatile aerosol concentrator and exposure system, or administered intra-cerebroventricular with either IKKβ inhibitor (IMD-0354) or TNFα antibody (infliximab) for 4–5 weeks simultaneously with PM2.5 exposure. Glucose tolerance, insulin sensitivity, oxygen consumption and heat production were evaluated. At euthanasia, blood, spleen, visceral adipose tissue and hypothalamus were collected to measure inflammatory cells using flow cytometry. Standard immunohistochemical methods and quantitative PCR were used to assess targets of interest. Results PM2.5 exposure led to hyperglycemia and insulin resistance, which was accompanied by increased hypothalamic IL-6, TNFα, and IKKβ mRNA expression and microglial/astrocyte reactivity. Targeting the NFκB pathway with intra-cerebroventricular administration of an IKKβ inhibitor [IMD-0354, n = 8 for each group)], but not TNFα blockade with infliximab [(n = 6 for each group], improved glucose tolerance, insulin sensitivity, rectified energy homeostasis (O2 consumption, CO2 production, respiratory exchange ratio and heat generation) and reduced peripheral inflammation in response to PM2.5. Conclusions Central inhibition of IKKβ prevents PM2.5 mediated peripheral inflammation and exaggeration of type II diabetes. These results provide novel insights into how air pollution may mediate susceptibility to insulin resistance and Type II DM.http://deepblue.lib.umich.edu/bitstream/2027.42/109486/1/12989_2014_Article_53.pd

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Ovariectomy in mice primes hippocampal microglia to exacerbate behavioral sickness responses

    No full text
    Estrogens are a group of steroid hormones that promote the development and maintenance of the female reproductive system and secondary sex characteristics. Estrogens also modulate immune responses; estrogen loss at menopause increases the risk of inflammatory disorders. Elevated inflammatory responses in the brain can lead to affective behavioral changes, which are characteristic of menopause. Thus, here we examined whether loss of estrogens sensitizes microglia, the primary innate immune cell of the brain, leading to changes in affective behaviors. To test this question, adult C57BL/6 mice underwent an ovariectomy to remove endogenous estrogens and then received estradiol hormone replacement or vehicle. After a one-month recovery, mice received an immune challenge with lipopolysaccharide (LPS) or vehicle control treatment and underwent behavioral testing. Ovariectomized, saline-treated mice exhibited reduced social investigation compared to sham-operated mice. Furthermore, ovariectomized mice that received LPS exhibited an exacerbated decrease in sucrose preference, which was ameliorated by estradiol replacement. These results indicate that ovariectomy modulates affective behaviors at baseline and in response to an inflammatory challenge. Ovariectomy-related behavioral changes were associated with downregulation of Cx3cr1, a microglial receptor that limits activation, suggesting that estrogen loss can disinhibit microglia to immune stimuli. Indeed, estradiol treatment reduced ovariectomy-induced increases in Il1b and Il6 expression after an immune challenge. Changes in microglial reactivity following ovariectomy are likely subtle, as overt changes in microglial morphology (e.g., soma size and branching) were limited. Collectively, these results suggest that a lack of estrogens may allow microglia to confer exaggerated neuroimmune responses, thereby raising vulnerability to adverse affective- and sickness-related behavioral changes
    corecore