44 research outputs found

    A lack of classical Cepheids in the inner part of the Galactic disk

    Full text link
    Recent large-scale infrared surveys have been revealing stellar populations in the inner Galaxy seen through strong interstellar extinction in the disk. In particular, classical Cepheids with their period-luminosity and period-age relations are useful tracers of Galactic structure and evolution. Interesting groups of Cepheids reported recently include four Cepheids in the Nuclear Stellar Disk (NSD), about 200 pc around the Galactic Centre, found by Matsunaga et al. and those spread across the inner part of the disk reported by Dekany and collaborators. We here report our discovery of nearly thirty classical Cepheids towards the bulge region, some of which are common with Dekany et al., and discuss the large impact of the reddening correction on distance estimates for these objects. Assuming that the four Cepheids in the NSD are located at the distance of the Galactic Centre and that the near-infrared extinction law, i.e. wavelength dependency of the interstellar extinction, is not systematically different between the NSD and other bulge lines-of-sight, most of the other Cepheids presented here are located significantly further than the Galactic Centre. This suggests a lack of Cepheids in the inner 2.5 kpc region of the Galactic disk except the NSD. Recent radio observations show a similar distribution of star-forming regions.Comment: 8 pages, 4 figures, accepted for publication in MNRA

    Gender influence on professional satisfaction and gender issue perception among young oncologists. A survey of the Young Oncologists Working Group of the Italian Association of Medical Oncology (AIOM)

    Get PDF
    Background: The professional gender gap is increasingly recognised in oncology. We explored gender issues perception and gender influence on professional satisfaction/gratification among young Italian oncologists. Methods: Italian oncologists aged 6440 years and members of the Italian Association of Medical Oncology were invited to participate in an online survey addressing workload/burnout, satisfaction in professional abilities and relations, relevant factors for professional gratification, and gender barriers. \u3c72 test for general association or \u3c72 test for trend was used to analyse the data. Results: 201 young oncologists participated in the survey: 67% female, 71% aged 30-40 years, 41% still in training and 82% without children. Women and men were equally poorly satisfied by the relations with people occupying superior hierarchical positions. There was heterogeneity between women and men in current (p=0.011) and expected future (p=0.007) satisfaction in professional abilities: women were more satisfied by current empathy and relations with colleagues and were more confident in their future managerial and team leader skills. The most important elements for professional gratification indicated by all participants were, in general, work-life balance (36%) and intellectual stimulation/research (32%); specifically for women, work-life balance (48%) and intellectual stimulation/research (20%); and specifically for men, career (29%) and social prestige/recognition (26%). Heterogeneity within the same gender emerged. For example, the elements indicated by men as the most important were intellectual stimulation/research (39%) and work-life balance (21%) in general, versus social prestige/recognition (24%) and career (24%), respectively, specifically for men (p<0.0001). More women versus men perceived gender issue as an actual problem (60% vs 38%, p=0.03); men underestimated gender barriers to women's career (p=0.011). Conclusions: Satisfaction in professional abilities varied by gender. Work-life balance is important for both women and men. Stereotypes about gender issues may be present. Gender issue is an actual problem for young oncologists, mostly perceived by women

    Year 1 of the Legacy Survey of Space and Time (LSST): Recommendations for Template Production to Enable Solar System Small Body Transient and Time Domain Science

    Get PDF
    The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will discover ~6 million solar system planetesimals, providing in total over a billion photometric and astrometric measurements in 6 broad-band filters. Rubin Observatory's automated data reduction pipelines will employ difference imaging; templates representing the static sky will be subtracted from the nightly LSST observations in order to identify transient sources, including solar system moving objects. These templates are expected to be generated by coadding high quality images of the same pointing from the previous year's survey observations. The first year of LSST operations will require a different method for generating templates, if solar system discoveries are to be reported daily like Year 2 and beyond. We make recommendations for template production in the LSST's first year and present the opportunities for solar system small body transient and time domain science enhanced by this change

    The TESS Triple-9 Catalog II: a new set of 999 uniformly-vetted exoplanet candidates

    Full text link
    The Transiting Exoplanet Survey Satellite (TESS) mission is providing the scientific community with millions of light curves of stars spread across the whole sky. Since 2018 the telescope has detected thousands of planet candidates that need to be meticulously scrutinized before being considered amenable targets for follow-up programs. We present the second catalog of the Plant Patrol citizen science project containing 999 uniformly-vetted exoplanet candidates within the TESS ExoFOP archive. The catalog was produced by fully exploiting the power of the Citizen Science Planet Patrol project. We vetted TESS Objects of Interest (TOIs) based on the results of Discovery And Vetting of Exoplanets DAVE pipeline. We also implemented the Automatic Disposition Generator, a custom procedure aimed at generating the final classification for each TOI that was vetted by at least three vetters. The majority of the candidates in our catalog, 752752 TOIs, passed the vetting process and were labelled as planet candidates. We ruled out 142142 candidates as false positives and flagged 105105 as potential false positives. Our final dispositions and comments for all the planet candidates are provided as a publicly available supplementary table.Comment: 17 pages, 11 figures, 5 tables. Accepted for publication on MNRA

    A systematic validation of hot Neptunes in TESS data

    Full text link
    We statistically validated a sample of hot Neptune candidates applying a two-step vetting technique using DAVE and TRICERATOPS. We performed a systematic validation of 250 transit-like events in the Transiting Exoplanet Survey Satellite (TESS) archive in the parameter region defined by P≤4P\leq 4 d and 3R⊕≤R≤5R⊕3R_\oplus\leq R\leq 5R_\oplus. Through our analysis, we identified 18 hot Neptune-sized candidates, with a false positive probability <50%<50\%. Nine of these planet candidates still need to be confirmed. For each of the nine targets we retrieved the stellar parameters using ARIADNE and derived constraints on the planetary parameters by fitting the lightcurves with the juliet package. Within this sample of nine candidates, we statistically validated (i.e, with false positive probability < 0.3%0.3\%) two systems (TOI-277 b and TOI-1288 b) by re-processing the candidates with TRICERATOPS along with follow-up observations. These new validated exoplanets expand the known hot Neptunes population and are high-priority targets for future radial velocities follow-up.Comment: 24 pages, 20 figures. Accepted for publication on MNRA

    A New Orbiting Deployable System for Small Satellite Observations for Ecology and Earth Observation

    Get PDF
    In this paper, we present several study cases focused on marine, oceanographic, and atmospheric environments, which would greatly benefit from the use of a deployable system for small satellite observations. As opposed to the large standard ones, small satellites have become an effective and affordable alternative access to space, owing to their lower costs, innovative design and technology, and higher revisiting times, when launched in a constellation configuration. One of the biggest challenges is created by the small satellite instrumentation working in the visible (VIS), infrared (IR), and microwave (MW) spectral ranges, for which the resolution of the acquired data depends on the physical dimension of the telescope and the antenna collecting the signal. In this respect, a deployable payload, fitting the limited size and mass imposed by the small satellite architecture, once unfolded in space, can reach performances similar to those of larger satellites. In this study, we show how ecology and Earth Observations can benefit from data acquired by small satellites, and how they can be further improved thanks to deployable payloads. We focus on DORA—Deployable Optics for Remote sensing Applications—in the VIS to TIR spectral range, and on a planned application in the MW spectral range, and we carry out a radiometric analysis to verify its performances for Earth Observation studies

    APOLLO 11 Project, Consortium in Advanced Lung Cancer Patients Treated With Innovative Therapies: Integration of Real-World Data and Translational Research

    Get PDF
    Introduction: Despite several therapeutic efforts, lung cancer remains a highly lethal disease. Novel therapeutic approaches encompass immune-checkpoint inhibitors, targeted therapeutics and antibody-drug conjugates, with different results. Several studies have been aimed at identifying biomarkers able to predict benefit from these therapies and create a prediction model of response, despite this there is a lack of information to help clinicians in the choice of therapy for lung cancer patients with advanced disease. This is primarily due to the complexity of lung cancer biology, where a single or few biomarkers are not sufficient to provide enough predictive capability to explain biologic differences; other reasons include the paucity of data collected by single studies performed in heterogeneous unmatched cohorts and the methodology of analysis. In fact, classical statistical methods are unable to analyze and integrate the magnitude of information from multiple biological and clinical sources (eg, genomics, transcriptomics, and radiomics). Methods and objectives: APOLLO11 is an Italian multicentre, observational study involving patients with a diagnosis of advanced lung cancer (NSCLC and SCLC) treated with innovative therapies. Retrospective and prospective collection of multiomic data, such as tissue- (eg, for genomic, transcriptomic analysis) and blood-based biologic material (eg, ctDNA, PBMC), in addition to clinical and radiological data (eg, for radiomic analysis) will be collected. The overall aim of the project is to build a consortium integrating different datasets and a virtual biobank from participating Italian lung cancer centers. To face with the large amount of data provided, AI and ML techniques will be applied will be applied to manage this large dataset in an effort to build an R-Model, integrating retrospective and prospective population-based data. The ultimate goal is to create a tool able to help physicians and patients to make treatment decisions. Conclusion: APOLLO11 aims to propose a breakthrough approach in lung cancer research, replacing the old, monocentric viewpoint towards a multicomprehensive, multiomic, multicenter model. Multicenter cancer datasets incorporating common virtual biobank and new methodologic approaches including artificial intelligence, machine learning up to deep learning is the road to the future in oncology launched by this project

    TESS discovery of a super-Earth and two sub-Neptunes orbiting the bright, nearby, Sun-like star HD 22946

    Full text link
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of a three-planet system around the bright Sun-like star HD~22946(V=8.3 mag),also known as TIC~100990000, located 63 parsecs away.The system was observed by TESS in Sectors 3, 4, 30 and 31 and two planet candidates, labelled TESS Objects of Interest (TOIs) 411.01 (planet cc) and 411.02 (planet bb), were identified on orbits of 9.57 and 4.04 days, respectively. In this work, we validate the two planets and recover an additional single transit-like signal in the light curve, which suggests the presence of a third transiting planet with a longer period of about 46 days.We assess the veracity of the TESS transit signals and use follow-up imaging and time series photometry to rule out false positive scenarios, including unresolved binary systems, nearby eclipsing binaries or background/foreground stars contaminating the light curves. Parallax measurements from Gaia EDR3, together with broad-band photometry and spectroscopic follow-up by TFOP allowed us to constrain the stellar parameters of TOI-411, including its radius of1.157±0.025R⊙1.157\pm0.025R_\odot. Adopting this value, we determined the radii for the three exoplanet candidates and found that planet bb is a super-Earth, with a radius of 1.72±0.10R⊕1.72\pm0.10R_\oplus, while planet cc and dd are sub-Neptunian planets, with radii of2.74±0.14R⊕2.74\pm0.14R_\oplus and 3.23±0.19R⊕3.23\pm0.19R_\oplus respectively. By using dynamical simulations, we assessed the stability of the system and evaluated the possibility of the presence of other undetected, non-transiting planets by investigating its dynamical packing. We find that the system is dynamically stable and potentially unpacked, with enough space to host at least one more planet between cc and dd.(Abridged)Comment: 21 pages, 12 figures. Accepted for publication on A&

    Final Targeting Strategy for the SDSS-IV APOGEE-2N Survey

    Full text link
    APOGEE-2 is a dual-hemisphere, near-infrared (NIR), spectroscopic survey with the goal of producing a chemo-dynamical mapping of the Milky Way Galaxy. The targeting for APOGEE-2 is complex and has evolved with time. In this paper, we present the updates and additions to the initial targeting strategy for APOGEE-2N presented in Zasowski et al. (2017). These modifications come in two implementation modes: (i) "Ancillary Science Programs" competitively awarded to SDSS-IV PIs through proposal calls in 2015 and 2017 for the pursuit of new scientific avenues outside the main survey, and (ii) an effective 1.5-year expansion of the survey, known as the Bright Time Extension, made possible through accrued efficiency gains over the first years of the APOGEE-2N project. For the 23 distinct ancillary programs, we provide descriptions of the scientific aims, target selection, and how to identify these targets within the APOGEE-2 sample. The Bright Time Extension permitted changes to the main survey strategy, the inclusion of new programs in response to scientific discoveries or to exploit major new datasets not available at the outset of the survey design, and expansions of existing programs to enhance their scientific success and reach. After describing the motivations, implementation, and assessment of these programs, we also leave a summary of lessons learned from nearly a decade of APOGEE-1 and APOGEE-2 survey operations. A companion paper, Santana et al. (submitted), provides a complementary presentation of targeting modifications relevant to APOGEE-2 operations in the Southern Hemisphere.Comment: 59 pages; 11 Figures; 7 Tables; 2 Appendices; Submitted to Journal and Under Review; Posting to accompany papers using the SDSS-IV/APOGEE-2 Data Release 17 scheduled for December 202
    corecore