94 research outputs found

    A rice transient assay system identifies a novel domain in NRR required for interaction with NH1/OsNPR1 and inhibition of NH1-mediated transcriptional activation

    Get PDF
    Abstract Background Arabidopsis NPR1 is a master regulator of systemic acquired resistance. NPR1 binds to TGA transcription factors and functions as a transcriptional co-activator. In rice, NH1/OsNPR1 functions to enhance innate immunity. NRR disrupts NH1 function, when over-expressed. Results We have established a rice transient protoplast assay to demonstrate that NH1 is a transcriptional co-activator and that NRR represses NH1-mediated activation. We identified three NRR homologues (RH1, RH2, and RH3). RH1 and RH3, but not RH2, also effectively repress NH1-mediated transcriptional activation. NRR, RH1, RH2, and RH3 share sequence similarity in a region beyond the previously identified NPR1-interacting domain. This region is required for strong interaction with NH1. A double point mutation, W66A/F70A, in this novel NH1-interacting domain severely reduces interaction with NH1. Mutation W66A/F70A also greatly reduces the ability of NRR to repress NH1-mediated activation. RH2 carries a deviation (amino acids AV) in this region as compared to consensus sequences (amino acids ED) among NRR, RH1, and RH3. A substitution (AV to ED) in RH2 results in strong binding of mutant RH2ED to NH1 and effective repression of NH1-mediated activation. Conclusions The protoplast-based transient system can be used to dissect protein domains associated with their functions. Our results demonstrate that the ability of NRR and its homologues to repress NH1-mediated transcriptional activation is tightly correlated with their ability to bind to NH1. Furthermore, a sequence is identified as a novel NH1-interacting domain. Importantly, this novel sequence is widely present in plant species, from cereals to castor bean plants, to poplar trees, to Arabidopsis, indicating its significance in plants

    Assessment of the Influence of Demographic and Professional Characteristics on Health Care Providers' Pain Management Decisions Using Virtual Humans

    Get PDF
    Disparities in health care associated with patients’ gender, race, and age are well documented. Previous studies using virtual human (VH) technology have demonstrated that provider characteristics may play an important role in pain management decisions. However, these studies have largely emphasized group differences. The aims of this study were to examine dentists’ and physicians’ use of VH characteristics when making clinical judgments (i.e., cue use) and to identify provider characteristics associated with the magnitude of the impact of these cues (β-weights). Providers (N=152; 76 physicians, 76 dentists) viewed video vignettes of VH patients varying in gender (male/female), race (white/black), and age (younger/older). Participants rated VH patients’ pain intensity and unpleasantness and then rated their own likelihood of administering non-opioid and opioid analgesics. Compared to physicians, dentists had significantly lower β-weights associated with VH age cues for all ratings (p0.69). These effects varied by provider race and gender. For pain intensity, professional differences were present only among non-white providers. White providers had greater β-weights than non-white providers for pain unpleasantness but only among men. Provider differences regarding the use of VH age cues in non-opioid analgesic administration were present among all providers except non-white males. These findings highlight the interaction of patient and provider factors in driving clinical decision making. Although profession was related to use of VH age cues in pain-related clinical judgments, this relationship was modified by providers’ personal characteristics. Additional research is needed to understand what aspects of professional training or practice may account for differences between physicians and dentists and what forms of continuing education may help to mitigate the disparities

    The Influence of Health Care Professional Characteristics on Pain Management Decisions

    Get PDF
    Objective Evidence suggests that patient characteristics such as sex, race, and age influence the pain management decisions of health care providers. Although this signifies that patient demographics may be important determinants of health care decisions, pain-related care also may be impacted by the personal characteristics of the health care practitioner. However, the extent to which health care provider characteristics affect pain management decisions is unclear, underscoring the need for further research in this area. Methods A total of 154 health care providers (77 physicians, 77 dentists) viewed video vignettes of virtual human (VH) patients varying in sex, race, and age. Practitioners provided computerized ratings of VH patients’ pain intensity and unpleasantness, and also reported their willingness to prescribe non-opioid and opioid analgesics for each patient. Practitioner sex, race, age, and duration of professional experience were included as predictors to determine their impact on pain management decisions. Results When assessing and treating pain, practitioner sex, race, age, and duration of experience were all significantly associated with pain management decisions. Further, the role of these characteristics differed across VH patient sex, race, and age. Conclusions These findings suggest that pain assessment and treatment decisions may be impacted by the health care providers’ demographic characteristics, effects which may contribute to pain management disparities. Future research is warranted to determine whether findings replicate in other health care disciplines and medical conditions, and identify other practitioner characteristics (e.g., culture) that may affect pain management decisions

    Grass lignin: biosynthesis, biological roles, and industrial applications

    Get PDF
    Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications

    Modification of plant cell walls with hydroxycinnamic acids by BAHD acyltransferases

    Get PDF
    In the last decade it has become clear that enzymes in the “BAHD” family of acyl-CoA transferases play important roles in the addition of phenolic acids to form ester-linked moieties on cell wall polymers. We focus here on the addition of two such phenolics—the hydroxycinnamates, ferulate and p-coumarate—to two cell wall polymers, glucuronoarabinoxylan and to lignin. The resulting ester-linked feruloyl and p-coumaroyl moities are key features of the cell walls of grasses and other commelinid monocots. The capacity of ferulate to participate in radical oxidative coupling means that its addition to glucuronoarabinoxylan or to lignin has profound implications for the properties of the cell wall – allowing respectively oxidative crosslinking to glucuronoarabinoxylan chains or introducing ester bonds into lignin polymers. A subclade of ~10 BAHD genes in grasses is now known to (1) contain genes strongly implicated in addition of p-coumarate or ferulate to glucuronoarabinoxylan (2) encode enzymes that add p-coumarate or ferulate to lignin precursors. Here, we review the evidence for functions of these genes and the biotechnological applications of manipulating them, discuss our understanding of mechanisms involved, and highlight outstanding questions for future research

    Advancing Crop Transformation in the Era of Genome Editing

    Get PDF
    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized

    OsWRKY IIa Transcription Factors Modulate Rice Innate Immunity

    Get PDF
    WRKY transcription factors regulate diverse plant processes including responses to biotic stresses. Our previous studies indicate that OsWRKY62, an OsWRKY IIa subfamily member, functions as a negative regulator of the rice defense against Xanthomonas oryzae pv. oryzae. Here, we report that a large inverted repeat construct designed to knock down the expression of the four OsWRKY IIa subfamily members (OsWRKY62, OsWRKY28, OsWRKY71, and OsWRKY76) leads to overexpression of all four genes and disease resistance in some transgenic plants. These phenotypes are stably inherited as reflected by progeny analysis. A pathogenesis-related gene, PR10, is up-regulated in plants overexpressing the OsWRKY IIa genes. These results suggest that OsWRKY IIa proteins interact functionally to modulate plant innate immunity
    corecore