7 research outputs found

    Weeds on hard surfaces in Saxony and efficacy of thermic weed control

    Get PDF
    In den Jahren 2006 bis 2008 fanden Unkrautaufnahmen auf 52 Wegen und Plätzen in Chemnitz und Umgebung statt. Mehr als 70 Unkrautarten wurden festgestellt. Domi­nierende Arten waren Poa annua L. und Taraxacum offici­nale Wiggers. Sie traten auf mehr als 90% der Flächen auf. Laubmoose und Plantago major L. erreichten Stetigkeiten um 80%. Auf fast 70% der Flächen wurde Solidago canadensis L. gefunden, ein Neophyt. Poa annua erreichte den höchsten mittleren Deckungsgrad. Hohe Deckungsgrade wurden auch bei Laubmoosen und Taraxacum officinale festgestellt. Von 2006 bis 2010 wurden auf Wegen und Plätzen in Chemnitz Untersuchungen zur Wirkung von drei thermischen Bekämpfungsverfahren gegen Unkräuter durchgeführt. Folgende Verfahren wurden untersucht: 1.Heißschaumverfahren „Waipuna“ in den Jahren 2006 und 2007, insgesamt 9 Flächen, zwei Anwendungen pro Jahr; 2.Heißdampfverfahren „OMK“ im Jahr 2008, 11 Flächen, drei bis vier Anwendungen pro Jahr; 3.Heißwasser-Heißdampfverfahren „Geysir“ in den Jahren 2009 und 2010, insgesamt 10 Flächen, drei bis vier Anwendungen pro Jahr. Die drei Verfahren wirkten meist gut gegen einjährige Unkräuter und Moose. Sie waren nicht ausreichend wirksam gegen Taraxacum officinale. Keines der drei Verfahren bekämpfte die Unkräuter vollständig mit der oben genannten Anzahl von Anwendungen. Bei mehrjähriger Anwendung des Heißwasser-Heißdampfverfahrens „Geysir“ konnte der Unkrautbesatz auf den Flächen verringert werden.    During the years 2006 to 2008 a research of weed occu­rence on footpaths and places was carried out in the city of Chemnitz and in the surrounding area. More than 70 weed species were found. Dominant species were Poa annua L. and Taraxacum officinale Wiggers. They were found on more than 90  of the places. Mosses and Plantago major L. occurred on about 80% of the locations. Solidago canadensis L., an invasive species, was found on almost 70% of the places. Poa annua had the highest average weed cover. Mosses and Taraxacum officinale had also a high weed cover. During the time span from 2006 to 2010 a research of the efficacy of thermic weed control systems was carried out in the city of Chemnitz. The following systems were tested: 1.Hot foam system „Waipuna“ in 2006 and 2007, altogether 9 areas, 2 applications per year; 2.Hot steam system „OMK“ in 2008, 11 areas, 3 to 4 applications per year; 3.Hot water – hot steam system „Geysir“, in 2009 and 2010, altogether 10 areas, 3 to 4 applications per year. These three systems had mostly good efficacy against annual weeds and mosses. They failed to control Taraxacum officinale. None of the three systems provided a complete weed control with the above-mentioned number of applications. Weed cover was reduced by perennial application of the hot steam – hot water system „Geysir“.   &nbsp

    Mobilität und Transportmechanismen von industriellen Nanopartikeln in Böden und wassergesättigten Sedimenten

    No full text
    Due to their promising and unique properties, nanoparticles (NP) are increasingly being used in industry and in everyday products. Their special properties are based on their size of less than 100 nm and the associated large surface area and high reactivity. If released into the environment during production or use, they may pose a risk to ecosystems and living organisms. For this reason, their input into the environment, transport and transformation processes, and consequences for ecosystems should be studied in detail, before higher environmental concentrations will occur. In this dissertation, the transformation and mobility of nanoparticles in soil and water-saturated systems were investigated. The main physico-chemical processes leading to colloidal stabilization of NP in these systems were uncovered. In addition, retention mechanisms in bank filtration systems were analyzed, as bank filtration is an important process in drinking water production. The influence of properties of natural soil solutions such as quantity and quality of organic matter and concentration of (multivalent) cations on the colloidal stability of silver (Ag) and titanium dioxide (TiO2) NP was investigated by batch experiments. In small-scale laboratory column experiments, important mechanisms for the retention of cerium dioxide (CeO2) and Ag NP were analyzed. In near-natural bank filtration systems, the effectiveness of these mechanisms was tested in more complex systems and over longer periods of time. The results of this work clearly show that different nanoparticles, despite their common small size, are subject to very different transformation processes in the environment. Depending on their surface properties, the type and quantity of the sorbed organic substance differs, which in turn is decisive for the colloidal stability and thus mobility of the NP. Nevertheless, the presence of multivalent cations, especially calcium (Ca2+), leads to a strong aggregation of the NP, even if organic coatings differ. Calcium and dissolved organic matter also play an important role for transport processes in water-saturated porous media: While Ca2+ leads to increased adhesion of NP to sediment surfaces, organic coatings promote steric repulsion between particles and surfaces. Especially NP with (synthetic) coatings, which are less susceptible to Ca2+ bridging, can be transported over long distances in saturated sediments. In addition to these properties of the mobile phase, hydrological factors and properties of the stationary phase are important. In clean laboratory systems, interactions with the solid phase such as iron oxides and clay minerals are mainly responsible for the retention of NP. In natural systems, however, biological surfaces such as biofilms, plants, and dead biomass offer many possibilities for the interaction with NP. Here, even an increase in the flow velocity cannot increase the transport. This leads to a low probability of NP transport in water-saturated, porous media such as bank filtration systems. Instead, NP accumulate in surficial sediments in most cases. These may be exposed to changing environmental conditions as well as high biological activity, which can lead to both mechanical and hydrochemical changes. In this case, there is a risk of NP remobilization, caused mainly by co-mobilization with natural colloids under strong mechanical forces and the presence of organic macromolecules. The results obtained in the dissertation indicate a low mobility of NP in soil and sediment ecosystems. Due to the ubiquitous presence of cations, NP aggregate rapidly in soils. Only in soil solutions with low ionic strength NP appear to be stable and thus mobile for a longer period of time. For riverbank filtrates as a potential drinking water resource, NP appear to be a low risk as long as they are present in the currently observed low concentrations. Nevertheless, stable organic coatings, higher flow velocities, and increasing amounts of introduced NP can contribute to increased transport into deeper sediment layers. Especially if ecosystems do not provide sufficient retention sites in biofilms and organic matter, a breakthrough of NP is possible. The co-transport of NP with natural colloids leads to high importance of preferential flow paths for NP transport. The strong accumulation of NP in near-surface sediment layers observed so far may lead to further risks for ecosystems such as the uptake of NP by grazers and thus a potential accumulation in the food web. All in all, the increasing input of NP into the environment should be critically observed and future investigations must focus on natural systems in order to test previously investigated processes and mechanisms in more complex environments.Nanopartikel (NP) finden aufgrund ihrer vielversprechenden und einzigartigen Eigenschaften zunehmend in der Industrie und in Alltagsprodukten Einsatz. Diese speziellen Eigenschaften beruhen auf ihrer Größe von unter 100 nm und der damit verbundenen großen Oberfläche und hohen Reaktivität. Gelangen sie bei ihrer Herstellung oder Verwendung in die Umwelt, stellen sie gegebenenfalls ein Risiko für Ökosysteme und Lebewesen dar. Aus diesem Grund sollte ihr Eintrag in die Umwelt, stattfindende Transport- und Umwandlungsprozesse sowie daraus erwachsende Folgen für Ökosysteme detailliert untersucht werden, ehe höhere Umweltkonzentrationen auftreten. Im Rahmen der vorliegenden Dissertation wurde die Umwandlung und Mobilität von Nanopartikeln im Boden und in wassergesättigten Systemen untersucht. Die wesentlichen physiko-chemischen Prozesse, die zur kolloidalen Stabilisierung von NP in diesen Systemen führen, wurden erforscht. Zudem stand die Untersuchung von Rückhaltemechanismen in Uferfiltrationssystemen im Vordergrund, da die Uferfiltration ein wichtiger Prozess in der Trinkwasseraufbereitung ist. Der Einfluss von Eigenschaften natürlicher Bodenlösungen wie Quantität und Qualität der organischen Substanz sowie Konzentration (multivalenter) Kationen auf die kolloidale Stabilität von Silber (Ag)- und Titandioxid (TiO2) NP wurde anhand von Batchexperimenten erforscht. Die Untersuchung von wichtigen Retentionsmechanismen für den Rückhalt von Cerdioxid (CeO2)- und Ag NP fand in kleinskaligen Laborsäulenversuchen statt. In naturnahen Uferfiltrationssystemen wurde die Wirksamkeit dieser Mechanismen dann in komplexeren Systemen und über längere Zeiträume überprüft. Die Ergebnisse der Dissertation zeigen deutlich, dass Nanopartikel trotz ihrer gemeinsamen geringen Größe sehr unterschiedlichen Transformationsprozessen in der Umwelt unterliegen. Je nach Oberflächeneigenschaften unterscheidet sich Art und Menge der sorbierten organischen Substanz, die wiederum entscheidend für die kolloidale Stabilität und damit Mobilität der NP ist. Die Anwesenheit multivalenter Kationen, insbesondere Kalzium (Ca2+), führt jedoch auch bei Anwesenheit unterschiedlicher organischer Coatings zur starken Aggregierung der NP. Kalzium und gelöste organische Substanz spielen auch für Transportprozesse in wassergesättigten porösen Medien eine wichtige Rolle: Während Ca2+ zur verstärkten Anhaftung von NP an Sedimentoberflächen führt, fördern organische Coatings die sterische Abstoßung zwischen Partikeln und Oberflächen. Insbesondere NP mit (synthetischen) Coatings, die eine geringe Anfälligkeit für Ca2+-Verbrückungen aufweisen, können in gesättigten Sedimenten über größere Distanzen transportiert werden. Neben diesen Eigenschaften der mobilen Phase sind aber auch hydrologische Faktoren und Eigenschaften der stationären Phase von Bedeutung. In abiotischen, definierten Laborsystemen sind vor allem Wechselwirkungen mit gegensätzlich geladenen Sorptionsplätzen der Festphase wie Eisenoxiden und Tonmineralen für den Rückhalt von NP verantwortlich In natürlichen Systemen dagegen bieten biologische Oberflächen wie Biofilme, Pflanzen und abgestorbene Organismen vielfältige Möglichkeiten für die Wechselwirkung mit NP. Hier kann auch eine Erhöhung der Fließgeschwindigkeit den Transport nicht verstärken. Dies führt zu einer geringen Wahrscheinlichkeit des NP-Transports in natürlichen wassergesättigten, porösen Medien wie Uferfiltrationssystemen. Stattdessen kommt es in den meisten Fällen zur Akkumulation von NP in oberflächennahen Sedimenten. Diese wiederum sind Änderungen von Umweltbedingungen ebenso wie hoher biologischer Aktivität ausgesetzt, was sowohl zu mechanischen als auch hydrochemischen Änderungen führen kann. In diesem Fall besteht das Risiko einer Remobilisierung der zurückgehaltenen Nanopartikel, die vor allem durch Co-Mobilisierung mit natürlichen Kolloiden hervorgerufen und durch mechanische Scherkräfte sowie bei Anwesenheit organischer Makromoleküle verstärkt wird. Die in der Dissertation erbrachten Ergebnisse weisen auf eine geringe Mobilität von NP in Böden und wassergesättigten Sedimenten hin. Durch die ubiquitäre Präsenz von Kationen aggregieren NP in Böden schnell. Nur in Bodenlösungen mit geringer Ionenstärke scheinen NP auch für längere Zeit stabil und damit mobil zu sein. Für Uferfiltrate als potenzielle Trinkwasserressource scheinen NP eine geringe Gefahr darzustellen, solange sie in den derzeit beobachteten niedrigen Konzentrationen vorliegen. Dennoch können stabile organische Coatings, höhere Fließgeschwindigkeiten und wachsende Mengen von eingetragenen NP zum verstärkten Transport in tiefere Sedimentschichten beitragen. Insbesondere wenn ein geschädigtes Ökosystem nicht ausreichend Retentionsplätze in Biofilmen und organischen Ablagerungen bietet, ist ein Durchbruch von NP möglich. Durch den Co-Transport von NP mit natürlichen Kolloiden wird zudem präferentiellen Fließwegen eine hohe Bedeutung im NP-Transport zukommen. Die bislang beobachtete starke Akkumulation von NP in oberflächennahen Sedimentschichten kann zu weiteren Gefahren für Ökosysteme führen wie die Aufnahme von NP durch Weidegänger und dadurch eine potentielle Akkumulation im Nahrungsnetz. Alles in allem sollte der zunehmende Eintrag von NP in die Umwelt kritisch beobachtet werden und zukünftige Untersuchungen müssen vor allem auf naturnähere Systeme fokussiert sein, um bisher erforschte Prozesse und Mechanismen in komplexeren Systemen zu überprüfen

    Transport and retention of differently coated CeO2 nanoparticles in saturated sediment columns under laboratory and near-natural conditions

    No full text
    Where surface-functionalized engineered nanoparticles (NP) occur in drinking water catchments, understanding their transport within and between environmental compartments such as surface water and groundwater is crucial for risk assessment of drinking water resources. The transport of NP is mainly controlled by (i) their surface properties, (ii) water chemistry, and (iii) surface properties of the stationary phase. Therefore, functionalization of NP surfaces by organic coatings may change their fate in the environment. In laboratory columns, we compared the mobility of CeO2 NP coated by the synthetic polymer polyacrylic acid (PAA) with CeO2 NP coated by natural organic matter (NOM) and humic acid (HA), respectively. The effect of ionic strength on transport in sand columns was investigated using deionized (DI) water and natural surface water with 2.2 mM Ca2+ (soft) and 4.5 mM Ca2+ (hard), respectively. Furthermore, the relevance of these findings was validated in a near-natural bank filtration experiment using HA-CeO2 NP. PAA-CeO2 NP were mobile under all tested water conditions, showing a breakthrough of 60% irrespective of the Ca2+ concentration. In contrast, NOM-CeO2 NP showed a lower mobility with a breakthrough of 27% in DI and < 10% in soft surface water. In hard surface water, NOM-CeO2 NP were completely retained in the first 2 cm of the column. The transport of HA-CeO2 NP in laboratory columns in soft surface water was lower compared to NOM-CeO2 NP with a strong accumulation of CeO2 NP in the first few centimeters of the column. Natural coatings were generally less stabilizing and more susceptible to increasing Ca2+ concentrations than the synthetic coating. The outdoor column experiment confirmed the low mobility of HA-CeO2 NP under more complex environmental conditions. From our experiments, we conclude that the synthetic polymer is more efficient in facilitating NP transport than natural coatings and hence, CeO2 NP mobility may vary significantly depending on the surface coating

    The fate of silver nanoparticles in riverbank filtration systems — The role of biological components and flow velocity

    No full text
    Riverbank filtration is a natural process that may ensure the cleaning of surface water for producing drinking water. For silver nanoparticles (AgNP), physico-chemical interaction with sediment surfaces is one major retention mechanism. However, the effect of flow velocity and the importance of biological retention, such as AgNP attachment to biomass, are not well understood, yet. We investigated AgNP (c = 0.6 mg L−1) transport at different spatial and temporal scales in pristine and previously pond water-aged sediment columns. Transport of AgNP under near-natural conditions was studied in a long-term riverbank filtration experiment over the course of one month with changing flow scenarios (i.e. transport at 0.7 m d−1, stagnation, and remobilization at 1.7 m d−1). To elucidate retention processes, we conducted small-scale lab column experiments at low (0.2 m d−1) and high (0.7 m d−1) flow rate using pristine and aged sediments. Overall, AgNP accumulated in the upper centimeters of the sediment both in lab and outdoor experiments. In the lab study, retention of AgNP by attachment to biological components was very effective under high and low flow rate with nearly complete NP accumulation in the upper 2 mm. When organic material was absent, abiotic filtration mechanisms led to NP retention in the upper 5 to 7 cm of the column. In the long-term study, AgNP were transported up to a depth of 25 cm. For the pristine sediment in the lab study and the outdoor experiments only erratic particle breakthrough was detected in a depth of 15 cm. We conclude that physico-chemical interactions of AgNP with sediment surfaces are efficient in retaining AgNP. The presence of organic material provides additional retention sites which increase the filtration capacity of the system. Nevertheless, erratic breakthrough events might transport NP into deeper sediment layers.DFG, 172114680, FOR 1536: INTERNANO: Mobility, aging and functioning of engineered inorganic nanoparticles at the aquatic-terrestrial interfac

    Retention and remobilization mechanisms of environmentally aged silver nanoparticles in an artificial riverbank filtration system

    No full text
    Riverbank filtration systems are important structures that ensure the cleaning of infiltrating surface water for drinking water production. In our study, we investigated the potential risk for a breakthrough of environmentally aged silver nanoparticles (Ag NP) through these systems. Additionally, we identified factors leading to the remobilization of Ag NP accumulated in surficial sediment layers in order to gain insights into remobilization mechanisms. We conducted column experiments with Ag NP in an outdoor pilot plant consisting of water-saturated sediment columns mimicking a riverbank filtration system. The NP had previously been aged in river water, soil extract, and ultrapure water, respectively. We investigated the depth-dependent breakthrough and retention of NP. In subsequent batch experiments, we studied the processes responsible for a remobilization of Ag NP retained in the upper 10 cm of the sediments, induced by ionic strength reduction, natural organic matter (NOM), and mechanical forces. We determined the amount of remobilized Ag by ICP-MS and differentiated between particulate and ionic Ag after remobilization using GFAAS. The presence of Ag-containing heteroaggregates was investigated by combining filtration with single-particle ICP-MS. Single and erratic Ag breakthrough events were mainly found in 30 cm depth and Ag NP were accumulated in the upper 20 cm of the columns. Soil-aged Ag NP showed the lowest retention of only 54%. Remobilization was induced by the reduction of ionic strength and the presence of NOM in combination with mechanical forces. The presence of calcium in the aging- as well as the remobilizing media reduced the remobilization potential. Silver NP were mainly remobilized as heteroaggregates with natural colloids, while dissolution played a minor role. Our study indicates that the breakthrough potential of Ag NP in riverbank filtration systems is generally low, but the aging in soil increases their mobility. Remobilization processes are associated to co-mobilization with natural colloids.DFG, 172114680, FOR 1536: INTERNANO: Mobility, aging and functioning of engineered inorganic nanoparticles at the aquatic-terrestrial interfac
    corecore