81 research outputs found

    Probiotics Supplementation Attenuates Inflammation and Oxidative Stress Induced by Chronic Sleep Restriction

    Get PDF
    Background: Insufficient sleep is a serious public health problem in modern society. It leads to increased risk of chronic diseases, and it has been frequently associated with cellular oxidative damage and widespread low-grade inflammation. Probiotics have been attracting increasing interest recently for their antioxidant and anti-inflammatory properties. Here, we tested the ability of probiotics to contrast oxidative stress and inflammation induced by sleep loss. Methods: We administered a multi-strain probiotic formulation (SLAB51) or water to normal sleeping mice and to mice exposed to 7 days of chronic sleep restriction (CSR). We quantified protein, lipid, and DNA oxidation as well as levels of gut-brain axis hormones and pro and anti-inflammatory cytokines in the brain and plasma. Furthermore, we carried out an evaluation of microglia morphology and density in the mouse cerebral cortex. Results: We found that CSR induced oxidative stress and inflammation and altered gut-brain axis hormones. SLAB51 oral administration boosted the antioxidant capacity of the brain, thus limiting the oxidative damage provoked by loss of sleep. Moreover, it positively regulated gut-brain axis hormones and reduced peripheral and brain inflammation induced by CSR. Conclusions: Probiotic supplementation can be a possible strategy to counteract oxidative stress and inflammation promoted by sleep loss

    Natural polyphenols as proteasome modulators and their role as anti-cancer compounds

    Get PDF
    The purpose of this review is to discuss the effect of natural antioxidantcompounds as modulators of the 20S proteasome, a multi-enzymatic multicatalytic complex present in the cytoplasm and nucleus of eukaryotic cells and involved in several cellular activities such as cell-cycle progression, proliferation and the degradation of oxidized and damaged proteins. From this perspective, proteasome inhibition is a promising approach to anticancer therapy and such natural antioxidant effectors can be considered as potential relevant adjuvants and pharmacological models in the study of new drugs

    SLAB51 Probiotic Formulation Activates SIRT1 Pathway Promoting Antioxidant and Neuroprotective Effects in an AD Mouse Model

    Get PDF
    The gut-brain axis is a bidirectional communication network functionally linking the gut and the central nervous system (CNS). Based on this, the rational manipulation of intestinal microbiota represents a novel attractive therapeutic strategy for the treatment of CNS-associated disorders. In this study, we explored the properties of a probiotic formulation (namely SLAB51) in counteracting brain oxidative damages associated with Alzheimer's disease (AD). Specifically, transgenic AD mice (3xTg-AD) were treated with SLAB51 and the effects on protein oxidation, neuronal antioxidant defence and repair systems were monitored, with the particular focus on the role of SIRT1-related pathways. We demonstrated that SLAB51 markedly reduced oxidative stress in AD mice brain by activating SIRT1-dependent mechanisms, thus representing a promising therapeutic adjuvant in AD treatment

    Ghrelin induces apoptosis in colon adenocarcinoma cells via proteasome inhibition and autophagy induction.

    Get PDF
    Ghrelin is a metabolism-regulating hormone recently investigated for its role in cancer survival and progression. Controversially, ghrelin may act as either anti-apoptotic or pro-apoptotic factor in different cancer cells, suggesting that the effects are cell type dependent. Limited data are currently available on the effects exerted by ghrelin on intracellular proteolytic pathways in cancer. Both the lysosomal and the proteasomal systems are fundamental in cellular proliferation and apoptosis regulation. With the aim of exploring if the proteasome and autophagy may be possible targets of ghrelin in cancer, we exposed human colorectal adenocarcinoma cells to ghrelin. Preliminary in vitro fluorimetric assays evidenced for the first time a direct inhibition of 20S proteasomes by ghrelin, particularly evident for the trypsin-like activity. Moreover, 1 μM ghrelin induced apoptosis in colorectal adenocarcinoma cells by inhibiting the ubiquitin-proteasome system and by activating autophagy, with p53 having an "interactive" role

    Interfering with the high-affinity interaction between wheat amylase trypsin inhibitor CM3 and toll-like receptor 4: in silico and biosensor-based studies

    Get PDF
    Wheat amylase/trypsin bi-functional inhibitors (ATIs) are protein stimulators of innate immune response, with a recently established role in promoting both gastrointestinal and extra-gastrointestinal inflammatory syndromes. These proteins have been reported to trigger downstream intestinal inflammation upon activation of TLR4, a member of the Toll-like family of proteins that activates signalling pathways and induces the expression of immune and pro-inflammatory genes. In this study, we demonstrated the ability of ATI to directly interact with TLR4 with nanomolar affinity, and we kinetically and structurally characterized the interaction between these macromolecules by means of a concerted approach based on surface plasmon resonance binding analyses and computational studies. On the strength of these results, we designed an oligopeptide capable of preventing the formation of the complex between ATI and the receptor

    Structure/activity virtual screening and in vitro testing of small molecule inhibitors of 8-hydroxy-5-deazaflavin:NADPH oxidoreductase from gut methanogenic bacteria

    Get PDF
    Abstract Virtual screening techniques and in vitro binding/inhibitory assays were used to search within a set of more than 8,000 naturally occurring small ligands for candidate inhibitors of 8-hydroxy-5-deazaflavin:NADPH oxidoreductase (FNO) from Methanobrevibacter smithii, the enzyme that catalyses the bidirectional electron transfer between NADP+ and F420H2 during the intestinal production of CH4 from CO2. In silico screening using molecular docking classified the ligand-enzyme complexes in the range between − 4.9 and − 10.5 kcal/mol. Molecular flexibility, the number of H-bond acceptors and donors, the extent of hydrophobic interactions, and the exposure to the solvent were the major discriminants in determining the affinity of the ligands for FNO. In vitro studies on a group of these ligands selected from the most populated/representative clusters provided quantitative kinetic, equilibrium, and structural information on ligands' behaviour, in optimal agreement with the predictive computational results

    Essential amino acid mixtures drive cancer cells to apoptosis through proteasome inhibition and autophagy activation

    Get PDF
    Cancer cells require both energy and material to survive and duplicate in a competitive environment. Nutrients, such as amino acids (AAs), are not only a caloric source, as they can modulate cell metabolism and modify hormones homeostasis. Our hypothesis is that the environmental messages provided by AAs rule the dynamics of cancer cells life or death, and the alteration of the balance between essential (EAAs) and non-essential amino acids (NEAAs) (lower and higher than 50%, respectively) present in nutrients may represent a key instrument to alter environment-dependent messages thus mastering cancer cells destiny. In this study, two amino acid mixtures, one exclusively consisting of EAAs and the other consisting of 85% essential and 15% non-essential amino acids, were tested to explore their effects on the viability of both normal and cancer cell lines and to clarify the molecular mechanisms involved. Both mixtures exerted a cell-dependent anti-proliferative, cytotoxic effect involving the inhibition of proteasome activity and the consequent activation of autophagy and apoptosis. These results, besides further validating the notion of the peculiar interdependence and extensive crosstalk between the ubiquitin-proteasome system and autophagy, indicate that variation in the ratio of EAAs and NEAAs can deeply influence cancer cell survival. Consequently, customization of dietary ratios among EAAs and NEAAs by specific amino acid mixtures may therefore represent a promising anticancer strategy able to selectively induce death of cancer cells through the induction of apoptosis via both ubiquitin-proteasome system inhibition and autophagy activation

    Arene–Ruthenium(II) Acylpyrazolonato Complexes: Apoptosis-Promoting Effects on Human Cancer Cells

    Get PDF
    A series of ruthenium(II) arene complexes with the 4-(biphenyl-4-carbonyl)-3-methyl-1-phenyl-5-pyrazolonate ligand, and related 1,3,5-triaza-7-phosphaadamantane (PTA) derivatives, has been synthesized. The compounds have been characterized by NMR and IR spectroscopy, ESI mass spectrometry, elemental analysis, and X-ray crystallography. Antiproliferative activity in four human cancer cell lines was determined by MTT assay, yielding dose- and cancer cell line-dependent IC50 values of 9-34 μM for three hexamethylbenzene-ruthenium complexes, whereas the other metal complexes were much less active. Apoptosis was the mechanism involved in the anticancer activity of such compounds. In fact, the hexamethylbenzene-ruthenium complexes activated caspase activity, with consequent DNA fragmentation, accumulation of pro-apoptotic proteins (p27, p53, p89 PARP fragments), and the concomitant down-regulation of antiapoptotic protein Bcl-2. Biosensor-based binding studies indicated that the ancillary ligands were critical in determining the DNA binding affinities, and competition binding experiments further characterized the nature of the interaction
    • …
    corecore