9 research outputs found

    TRAIL/TRAIL Receptor System and Susceptibility to Multiple Sclerosis

    Get PDF
    The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10−4, OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10−5, OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS

    RNA disruption is a widespread phenomenon associated with stress-induced cell death in tumour cells

    No full text
    Abstract We have previously shown that neoadjuvant chemotherapy can induce the degradation of tumour ribosomal RNA (rRNA) in patients with advanced breast cancer, a phenomenon we termed “RNA disruption”. Extensive tumour RNA disruption during chemotherapy was associated with a post-treatment pathological complete response and improved disease-free survival. The RNA disruption assay (RDA), which quantifies this phenomenon, is now being evaluated for its clinical utility in a large multinational clinical trial. However, it remains unclear if RNA disruption (i) is manifested across many tumour and non-tumour cell types, (ii) can occur in response to cell stress, and (iii) is associated with tumour cell death. In this study, we show that RNA disruption is induced by several mechanistically distinct chemotherapy agents and report that this phenomenon is observed in response to oxidative stress, endoplasmic reticulum (ER) stress, protein translation inhibition and nutrient/growth factor limitation. We further show that RNA disruption is dose- and time-dependent, and occurs in both tumourigenic and non-tumourigenic cell types. Northern blotting experiments suggest that the rRNA fragments generated during RNA disruption stem (at least in part) from the 28S rRNA. Moreover, we demonstrate that RNA disruption is reproducibly associated with three robust biomarkers of cell death: strongly reduced cell numbers, lost cell replicative capacity, and the generation of cells with a subG1 DNA content. Thus, our findings indicate that RNA disruption is a widespread phenomenon exhibited in mammalian cells under stress, and that high RNA disruption is associated with the onset of cell death

    Pure anti-tumor effect of zoledronic acid in na\uefve bone-only metastatic and locally advanced breast cancer: Proof from the "biological window therapy"

    No full text
    The study investigated the anti-tumour effect of zoledronic acid (ZA) administered alone in a biological window therapy in na\uefve bone-only metastatic and locally advanced breast cancer (LABC) patients. 33 patients with LABC (Group 1) and 20 patients with a first diagnosis of bone metastasis only (Group 2) received 4 mg single dose of ZA, 14 days (biological window) before starting any treatment. In Group 1, Ki67, CD34, p53/bcl-2 and caspase 3 expression along with the adenosine triphosphate (ATP) levels and RNA disruption index were evaluated as markers of tumor growth in tumour specimens obtained before and after ZA administration (basal, day 14). In Group 2, the total enumeration of circulating tumour cells (CTCs), and of M30+ve CTCs along with the soluble marker of cell death (M30/M65) were carried-out as markers of tumor dissemination at baseline, at 48 h and day 14th. In Group 1, there was a significant reduction in Ki67, CD34, bcl-2 expression after 14 days ZA based-treatment (p = 0.0032; p = 0.0001, p < 0.00001 respectively). ZA showed a significant increase of RNA disruption (p < 0.0076). In Group 2, we observed a significant reduction of CTCs number after 48 h (p = 0.0012), followed by a significant rebound at 14 days (p = 0.012). The apoptotic CTCs/M30+ve and M65 levels significantly increased under treatment (p = 0.018 and p = 0.039 respectively) after drug administration when compared to the baseline. These results are the first prospective in vivo data showing the direct pure anti-tumour effect (either on the tumour cell or on CTCs) of ZA

    Pure anti-tumor effect of zoledronic acid in naïve bone-only metastatic and locally advanced breast cancer: proof from the "biological window therapy"

    No full text
    The study investigated the anti-tumour effect of zoledronic acid (ZA) administered alone in a biological windowtherapyinna ̈ıvebone-onlymetastaticandlocally advanced breast cancer (LABC) patients. 33 patients with LABC (Group 1) and 20 patients with a first diagnosis of bone metastasis only (Group 2) received 4 mg single dose of ZA, 14 days (biological window) before starting any treatment. In Group 1, Ki67, CD34, p53/bcl-2 and caspase 3 expression along with the adenosine triphosphate (ATP) levels and RNA disruption index were evaluated as markers of tumor growth in tumour specimens obtained before and after ZA administration (basal, day 14). In Group 2, the total enumeration of circulating tumour cells (CTCs), and of M30?ve CTCs along with the soluble marker of cell death (M30/M65) were carried-out as markers of tumor dissemination at baseline, at 48 h and day 14th. In Group 1, there was a significant reduction in Ki67, CD34, bcl-2 expression after 14 days ZA based-treatment (p = 0.0032; p = 0.0001, p &lt; 0.00001 respectively). ZA showed a significant increase of RNA disruption (p &lt; 0.0076). In Group 2, we observed a significant reduction of CTCs number after 48h (p = 0.0012), followed by a significant rebound at 14 days (p = 0.012). The apoptotic CTCs/M30?ve and M65 levels significantly increased under treatment (p = 0.018 and p = 0.039 respectively) after drug administration when compared to the baseline. These results are the first prospective in vivo data showing the direct pure anti-tumour effect (either on the tumour cell or on CTCs) of ZA
    corecore