115 research outputs found

    Nerves are more abundant than blood vessels in the degenerate human intervertebral disc

    Get PDF
    Chronic low back pain (LBP) is the most common cause of disability worldwide. New ideas surrounding LBP are emerging that are based on interactions between mechanical, biological and chemical influences on the human IVD. The degenerate IVD is proposed to be innervated by sensory nerve fibres and vascularised by blood vessels, and it is speculated to contribute to pain sensation. However, the incidence of nerve and blood vessel ingrowth, as well as whether these features are always associated, is unknown. We investigated the presence of nerves and blood vessels in the nucleus pulposus (NP) of the IVD in a large population of human discs

    Celecoxib alleviates nociceptor sensitization mediated by interleukin-1beta-primed annulus fibrosus cells.

    Get PDF
    PURPOSE This study aims to analyze the effect of pro-inflammatory cytokine-stimulated human annulus fibrosus cells (hAFCs) on the sensitization of dorsal root ganglion (DRG) cells. We further hypothesized that celecoxib (cxb) could inhibit hAFCs-induced DRG sensitization. METHODS hAFCs from spinal trauma patients were stimulated with TNF-α or IL-1β. Cxb was added on day 2. On day 4, the expression of pro-inflammatory and neurotrophic genes was evaluated using RT-qPCR. Levels of prostaglandin E2 (PGE-2), IL-8, and IL-6 were measured in the conditioned medium (CM) using ELISA. hAFCs CM was then applied to stimulate the DRG cell line (ND7/23) for 6 days. Then, calcium imaging (Fluo4) was performed to evaluate DRG cell sensitization. Both spontaneous and bradykinin-stimulated (0.5 μM) calcium responses were analyzed. The effects on primary bovine DRG cell culture were performed in parallel to the DRG cell line model. RESULTS IL-1ß stimulation significantly enhanced the release of PGE-2 in hAFCs CM, while this increase was completely suppressed by 10 µM cxb. hAFCs revealed elevated IL-6 and IL-8 release following TNF-α and IL-1β treatment, though cxb did not alter this. The effect of hAFCs CM on DRG cell sensitization was influenced by adding cxb to hAFCs; both the DRG cell line and primary bovine DRG nociceptors showed a lower sensitivity to bradykinin stimulation. CONCLUSION Cxb can inhibit PGE-2 production in hAFCs in an IL-1β-induced pro-inflammatory in vitro environment. The cxb applied to the hAFCs also reduces the sensitization of DRG nociceptors that are stimulated by the hAFCs CM

    Cell uptake and intracellular trafficking of bioreducible poly(amidoamine) nanoparticles for efficient mRNA translation in chondrocytes

    Get PDF
    Disulfide-containing poly(amidoamine) (PAA) is a cationic and bioreducible polymer, with potential use as a nanocarrier for mRNA delivery in the treatment of several diseases including osteoarthritis (OA). Successful transfection of joint cells with PAA-based nanoparticles (NPs) was shown previously, but cell uptake, endosomal escape and nanoparticle biodegradation were not studied in detail. In this study, C28/I2 human chondrocytes were transfected with NPs co-formulated with a PEG-polymer coating and loaded with EGFP mRNA for confocal imaging of intracellular trafficking and evaluation of transfection efficiency. Compared with uncoated NPs, PEG-coated NPs showed smaller particle size, neutral surface charge, higher colloidal stability and superior transfection efficiency. Furthermore, endosomal entrapment of these PEG-coated NPs decreased over time and mRNA release could be visualized both in vitro and in live cells. Importantly, cell treatment with modulators of the intracellular reducing environment showed that glutathione (GSH) concentrations affect translation of the mRNA payload. Finally, we applied a D-optimal experimental design to test different polymer-to-RNA loading ratios and dosages, thus obtaining an optimal formulation with up to ≈80% of GFP-positive cells and without toxic effects. Together, the biocompatibility and high transfection efficiency of this system may be a promising tool for intra-articular delivery of therapeutical mRNA in OA treatment

    Drug delivery in intervertebral disc degeneration and osteoarthritis : Selecting the optimal platform for the delivery of disease-modifying agents

    Get PDF
    Acknowledgement We would like to acknowledge Prof. Gerjo Van Osch and prof Molly Stevens for their careful and critical revision of the manuscript. We wish to thank all principal investigators of the TargetCaRe consortium for their enormous support during the years: Prof G. van Osch. Prof. Mauro Alini, Prof. Bruce Caterson, Dr. Alan Chan, Prof. Cosimo De Bari, Prof. Ron Heeren, Prof. Kennet Howard, Prof. Marcelle Machluf, Prof. Molly M. Stevens and Prof. Avner Yayon. This work was supported by European Union's Horizon 2020 Research And Innovation Programme under Marie Sklodowska Curie Grant agreement no. 642414.Peer reviewedproofPublisher PD

    Hyperosmolar expansion medium improves nucleus pulposus cell phenotype

    Get PDF
    Background:Repopulating the degenerated intervertebral disc (IVD) with tissue-spe-cific nucleus pulposus cells (NPCs) has already been shown to promote regenerationin various species. Yet the applicability of NPCs as cell-based therapy has been ham-pered by the low cell numbers that can be extracted from donor IVDs and theirpotentially limited regenerative capacity due to their degenerated phenotype. Tooptimize the expansion conditions, we investigated the effects of increasing culturemedium osmolarity during expansion on the phenotype of dog NPCs and their abilityto produce a healthy extracellular matrix (ECM) in a 3D culture model.Methods:Dog NPCs were expanded in expansion medium with a standard osmolar-ity of 300 mOsm/L or adjusted to 400 or 500 mOsm/L in both normoxic and hypoxicconditions. Following expansion, NPCs were cultured in a 3D culture model in chon-drogenic culture medium with a standard osmolarity. Read-out parameters includedcell proliferaton rate, morphology, phenotype and healthy ECM production.Results:Increasing the expansion medium osmolarity from 300 to 500 mOsm/Lresulted in NPCs with a more rounded morphology and a lower cell proliferation rateaccompanied by the expression of several healthy NPC and progenitor markers atgene (KRT18, ACAN, COL2, CD73, CD90) and protein (ACAN, PAX1, CD24, TEK,CD73) level. The NPCs expanded at 500 mOsm/L were able to retain most of theirphenotypic markers and produce healthy ECM during 3D culture independent of theoxygen level used during expansion. Conclusions:Altogether, our findings show that increasing medium osmolarity duringexpansion results in an NPC population with improved phenotype, which couldenhance the potential of cell-based therapies for IVD regeneration

    Hyperosmolar expansion medium improves nucleus pulposus cell phenotype

    Get PDF
    Background: Repopulating the degenerated intervertebral disc (IVD) with tissue-specific nucleus pulposus cells (NPCs) has already been shown to promote regeneration in various species. Yet the applicability of NPCs as cell-based therapy has been hampered by the low cell numbers that can be extracted from donor IVDs and their potentially limited regenerative capacity due to their degenerated phenotype. To optimize the expansion conditions, we investigated the effects of increasing culture medium osmolarity during expansion on the phenotype of dog NPCs and their ability to produce a healthy extracellular matrix (ECM) in a 3D culture model. Methods: Dog NPCs were expanded in expansion medium with a standard osmolarity of 300 mOsm/L or adjusted to 400 or 500 mOsm/L in both normoxic and hypoxic conditions. Following expansion, NPCs were cultured in a 3D culture model in chondrogenic culture medium with a standard osmolarity. Read-out parameters included cell proliferaton rate, morphology, phenotype and healthy ECM production. Results: Increasing the expansion medium osmolarity from 300 to 500 mOsm/L resulted in NPCs with a more rounded morphology and a lower cell proliferation rate accompanied by the expression of several healthy NPC and progenitor markers at gene ( KRT18, ACAN, COL2, CD73, CD90) and protein (ACAN, PAX1, CD24, TEK, CD73) level. The NPCs expanded at 500 mOsm/L were able to retain most of their phenotypic markers and produce healthy ECM during 3D culture independent of the oxygen level used during expansion. Conclusions: Altogether, our findings show that increasing medium osmolarity during expansion results in an NPC population with improved phenotype, which could enhance the potential of cell-based therapies for IVD regeneration

    Hedgehog proteins and parathyroid hormone‐related protein are involved in intervertebral disc maturation, degeneration, and calcification

    Get PDF
    Parathyroid hormone‐related protein (PTHrP) and hedgehog signaling play an important role in chondrocyte development, (hypertrophic) differentiation, and/or calcification, but their role in intervertebral disc (IVD) degeneration is unknown. Better understanding their involvement may provide therapeutic clues for low back pain due to IVD degeneration. Therefore, this study aimed to explore the role of PTHrP and hedgehog proteins in postnatal canine and human IVDs during the aging/degenerative process. The expression of PTHrP, hedgehog proteins and related receptors was studied during the natural loss of the notochordal cell (NC) phenotype during IVD maturation using tissue samples and de‐differentiation in vitro and degeneration by real‐time quantitative polymerase chain reaction (RT‐qPCR) and immunohistochemistry. Correlations between their expression and calcification levels (Alizarin Red S staining) were determined. In addition, the effect of PTHrP and hedgehog proteins on canine and human chondrocyte‐like cells (CLCs) was determined in vitro focusing on the propensity to induce calcification. The expression of PTHrP, its receptor (PTHR1) and hedgehog receptors decreased during loss of the NC phenotype. N‐terminal (active) hedgehog (Indian hedgehog/Sonic hedgehog) protein expression did not change during maturation or degeneration, whereas expression of PTHrP, PTHR1 and hedgehog receptors increased during IVD degeneration. Hedgehog and PTHR1 immunopositivity were increased in nucleus pulposus tissue with abundant vs no/low calcification. In vitro, hedgehog proteins facilitated calcification in CLCs, whereas PTHrP did not affect calcification levels. In conclusion, hedgehog and PTHrP expression is present in healthy and degenerated IVDs. Hedgehog proteins had the propensity to induce calcification in CLCs from degenerated IVDs, indicating that in the future, inhibiting hedgehog signaling could be an approach to inhibit calcification during IVD degeneration
    corecore