3,114 research outputs found
Relativistic Effects in Extrasolar Planetary Systems
This paper considers general relativistic (GR) effects in currently observed
extrasolar planetary systems. Although GR corrections are small, they can
compete with secular interactions in these systems and thereby play an
important role. Specifically, some of the observed multiple planet systems are
close to secular resonance, where the dynamics is extremely sensitive to GR
corrections, and these systems can be used as laboratories to test general
relativity. For the three-planet solar system Upsilon Andromedae, secular
interaction theory implies an 80% probability of finding the system with its
observed orbital elements if GR is correct, compared with only a 2% probability
in the absence of GR. In the future, tighter constraints can be obtained with
increased temporal coverage.Comment: Accepted for publication in International Journal of Modern Physics
D; this paper received ``Honorable Mention'' in the 2006 Essay Competition of
the Gravity Research Foundation; 9 pages including 1 figur
Pairing via Index theorem
This work is motivated by a specific point of view: at short distances and
high energies the undoped and underdoped cuprates resemble the -flux phase
of the t-J model. The purpose of this paper is to present a mechanism by which
pairing grows out of the doped -flux phase. According to this mechanism
pairing symmetry is determined by a parameter controlling the quantum tunneling
of gauge flux quanta. For zero tunneling the symmetry is ,
while for large tunneling it is . A zero-temperature critical
point separates these two limits
First Results from the Transit Ephemeris Refinement and Monitoring Survey (TERMS)
Transiting planet discoveries have yielded a plethora of information towards understanding the structure and atmospheres of extra-solar planets. These discoveries have been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parmaters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project which is monitoring these host stars at predicted transit times
Gain control in molecular information processing: Lessons from neuroscience
Statistical properties of environments experienced by biological signaling
systems in the real world change, which necessitate adaptive responses to
achieve high fidelity information transmission. One form of such adaptive
response is gain control. Here we argue that a certain simple mechanism of gain
control, understood well in the context of systems neuroscience, also works for
molecular signaling. The mechanism allows to transmit more than one bit (on or
off) of information about the signal independently of the signal variance. It
does not require additional molecular circuitry beyond that already present in
many molecular systems, and, in particular, it does not depend on existence of
feedback loops. The mechanism provides a potential explanation for abundance of
ultrasensitive response curves in biological regulatory networks.Comment: 10 pages, 5 figure
MACHOs, White Dwarfs, and the Age of the Universe
(Abridged Abstract) A favored interpretation of recent microlensing
measurements towards the Large Magellanic Cloud implies that a large fraction
(i.e. 10--50%) of the mass of the galactic halo is composed of white dwarfs. We
compare model white dwarf luminosity functions to the data from the
observational surveys in order to determine a lower bound on the age of any
substantial white dwarf halo population (and hence possibly on the age of the
Universe). We compare various theoretical white dwarf luminosity functions, in
which we vary hese three parameters, with the abovementioned survey results.
From this comparison, we conclude that if white dwarfs do indeed constitute
more than 10% of the local halo mass density, then the Universe must be at
least 10 Gyr old for our most extreme allowed values of the parameters. When we
use cooling curves that account for chemical fractionation and more likely
values of the IMF and the bolometric correction, we find tighter limits: a
white dwarf MACHO fraction of 10% (30%) requires a minimum age of 14 Gyr (15.5
Gyr). Our analysis also indicates that the halo white dwarfs almost certainly
have helium-dominated atmospheres.Comment: Final version accepted for publication, straight TeX formate, 6 figs,
22 page
A pair of planets around HD 202206 or a circumbinary planet?
Long-term precise Doppler measurements with the CORALIE spectrograph reveal
the presence of a second planet orbiting the solar-type star HD202206. The
radial-velocity combined fit yields companion masses of m_2\sini = 17.4 M_Jup
and 2.44 M_Jup, semi-major axes of a = 0.83 AU and 2.55 AU, and eccentricities
of e = 0.43 and 0.27, respectively. A dynamical analysis of the system further
shows a 5/1 mean motion resonance between the two planets. This system is of
particular interest since the inner planet is within the brown-dwarf limits
while the outer one is much less massive. Therefore, either the inner planet
formed simultaneously in the protoplanetary disk as a superplanet, or the outer
Jupiter-like planet formed in a circumbinary disk. We believe this singular
planetary system will provide important constraints on planetary formation and
migration scenarios.Comment: 9 pages, 14 figures, accepted in A&A, 12-May-200
Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope
Doppler and transit surveys are finding extrasolar planets of ever smaller
mass and radius, and are now sampling the domain of superEarths (1-3 Earth
radii). Recent results from the Doppler surveys suggest that discovery of a
transiting superEarth in the habitable zone of a lower main sequence star may
be possible. We evaluate the prospects for an all-sky transit survey targeted
to the brightest stars, that would find the most favorable cases for
photometric and spectroscopic characterization using the James Webb Space
Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite
(TESS) as representative of an all-sky survey. We couple the simulated TESS
yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. We
focus on the TESS planets with radii between Earth and Neptune. Our simulations
consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11-
and 15-micron bands to measure CO2 absorption in superEarths, as well as
JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and CO2
absorption at 4.3-microns. We project that TESS will discover about eight
nearby habitable transiting superEarths. The principal sources of uncertainty
in the prospects for JWST characterization of habitable superEarths are
superEarth frequency and the nature of superEarth atmospheres. Based on our
estimates of these uncertainties, we project that JWST will be able to measure
the temperature, and identify molecular absorptions (water, CO2) in one to four
nearby habitable TESS superEarths.Comment: accepted for PASP; added discussion and figure for habitable planets;
abridged Abstrac
Fundamental constants in effective theory
There is a discussion between L. B. Okun, G. Veneziano and M. J. Duff,
concerning the number of fundamental dimensionful constants in physics
(physics/0110060). They advocated correspondingly 3, 2 and 0 fundamental
constants. Here we consider this problem on example of the effective
relativistic quantum field theory, which emerges in the low energy corner of
quantum liquids and which reproduces many features of our physics including
chiral fermions, gauge fields and dynamical gravity.Comment: LaTeX file, 9 pages, version submitted to JETP Letter
- âŠ