38 research outputs found

    The Epidemiology, Genetics and Future Management of Syndactyly

    Get PDF
    Syndactyly is a condition well documented in current literature due to it being the most common congenital hand defect, with a large aesthetic and functional significance

    A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients

    Get PDF

    Elevated exposures to persistent endocrine disrupting compounds impact the sperm methylome in regions associated with autism spectrum disorder

    No full text
    Environmental exposures to endocrine disrupting compounds (EDCs) such as the organochlorines have been linked with various diseases including neurodevelopmental disorders. Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder that is considered strongly genetic in origin due to its high heritability. However, the rapidly rising prevalence of ASD suggests that environmental factors may also influence risk for ASD. In the present study, whole genome bisulfite sequencing was used to identify genome-wide differentially methylated regions (DMRs) in a total of 52 sperm samples from a cohort of men from the Faroe Islands (Denmark) who were equally divided into high and low exposure groups based on their serum levels of the long-lived organochlorine 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), a primary breakdown product of the now banned insecticide dichlorodiphenyltrichloroethane (DDT). Aside from being considered a genetic isolate, inhabitants of the Faroe Islands have a native diet that potentially exposes them to a wide range of seafood neurotoxicants in the form of persistent organic pollutants (POPs). The DMRs were mapped to the human genome using Bismark, a 3-letter aligner used for methyl-seq analyses. Gene ontology, functional, and pathway analyses of the DMR-associated genes showed significant enrichment for genes involved in neurological functions and neurodevelopmental processes frequently impacted by ASD. Notably, these genes also significantly overlap with autism risk genes as well as those previously identified in sperm from fathers of children with ASD in comparison to that of fathers of neurotypical children. These results collectively suggest a possible mechanism involving altered methylation of a significant number of neurologically relevant ASD risk genes for introducing epigenetic changes associated with environmental exposures into the sperm methylome. Such changes may provide the potential for transgenerational inheritance of ASD as well as other disorders

    Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    No full text
    <div><p>The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase <i>Casp3</i> and Wnt transcription factor <i>Tcf7l2</i>. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the <i>Acca1</i> thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.</p></div
    corecore