13 research outputs found

    Epac Function and cAMP Scaffolds in the Heart and Lung

    Get PDF
    Evidence collected over the last ten years indicates that Epac and cAMP scaffold proteins play a critical role in integrating and transducing multiple signaling pathways at the basis of cardiac and lung physiopathology. Some of the deleterious effects of Epac, such as cardiomyocyte hypertrophy and arrhythmia, initially described in vitro, have been confirmed in genetically modified mice for Epac1 and Epac2. Similar recent findings have been collected in the lung. The following sections will describe how Epac and cAMP signalosomes in different subcellular compartments may contribute to cardiac and lung diseases

    Modeling Epac1 interactions with the allosteric inhibitor AM-001 by co-solvent molecular dynamics

    Get PDF
    The exchange proteins activated by cAMP (EPAC) are implicated in a large variety of physiological processes and they are considered as promising targets for a wide range of therapeutic applications. Several recent reports provided evidence for the therapeutic effectiveness of the inhibiting EPAC1 activity cardiac diseases. In that context, we recently characterized a selective EPAC1 antagonist named AM-001. This compound was featured by a non-competitive mechanism of action but the localization of its allosteric site to EPAC1 structure has yet to be investigated. Therefore, we performed cosolvent molecular dynamics with the aim to identify a suitable allosteric binding site. Then, the docking and molecular dynamics were used to determine the binding of the AM-001 to the regions highlighted by cosolvent molecular dynamics for EPAC1. These analyses led us to the identification of a suitable allosteric AM-001 binding pocket at EPAC1. As a model validation, we also evaluated the binding poses of the available AM-001 analogues, with a different biological potency. Finally, the complex EPAC1 with AM-001 bound at the putative allosteric site was further refined by molecular dynamics. The principal component analysis led us to identify the protein motion that resulted in an inactive like conformation upon the allosteric inhibitor binding

    Glucosylceramide synthase deficiency in the heart compromises ÎČ1-adrenergic receptor trafficking

    Get PDF
    Aims: Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function.Methods and results: Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to ÎČ-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of ÎČ1-adrenergic receptors.Conclusions: Our findings suggest that cardiac glycosphingolipids are required to maintain ÎČ-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.</p

    Roles and Mechanisms of Action of Mitochondrial Epac1 Protein in Cardiac Pathologies

    No full text
    Le cƓur est un organe Ă©nergivore dont la majoritĂ© de l’ATP consommĂ©e provient du mĂ©tabolisme oxydatif de la mitochondrie. Cet organite joue Ă©galement un rĂŽle central dans la rĂ©gulation de l’homĂ©ostasie calcique, la production des espĂšces rĂ©actives de l’oxygĂšne (ROS) et l’apoptose. Ces fonctions sont dĂ©rĂ©gulĂ©es au cours de l’insuffisance cardiaque (IC). Il est donc important d’identifier les signalisations Ă  l’origine de ces dysfonctions et de les valider en tant que cible thĂ©rapeutique pour le traitement de l’IC. Bien que le second messager AMP cyclique (AMPc) soit essentiel Ă  la fonction cardiaque, il contribue Ă  la progression de l’IC. Cependant, les bases molĂ©culaires de ses effets dĂ©lĂ©tĂšres dans les pathologies cardiaques sont loin d'ĂȘtre Ă©lucidĂ©es. Le but de ce travail fĂ»t de dĂ©terminer les effets mitochondriaux d’une protĂ©ine effectrice de l’AMPc, Epac1. Nous avons Ă©tudiĂ© ses rĂŽles mitochondriaux (mitEpac1) dans deux conditions de stress cardiaque connues pour perturber le fonctionnement de la mitochondrie : un stress aigu induit par une ischĂ©mie reperfusion (I/R) et un stress chronique provoquĂ© par un rĂ©gime riche en graisse (HFD) conduisant Ă  une cardiomyopathie diabĂ©tique. Par ailleurs, nous avons caractĂ©risĂ© un nouvel inhibiteur pharmacologique de Epac1 appelĂ© AM-001 et Ă©tudiĂ© ses propriĂ©tĂ©s cardioprotectrices chez la souris. D’une part, nous montrons que la dĂ©lĂ©tion gĂ©nique de Epac1 (Epac1-/-) chez la souris protĂšge des lĂ©sions de l'I/R myocardique en rĂ©duisant la taille de l’infarctus. L'inhibition pharmacologique de Epac1 par le CE3F4 prĂ©vient de l'apoptose des cardiomyocytes (CM) induite par l'hypoxie/rĂ©oxygĂ©nation (HX+R). Sur le plan mĂ©canistique, Epac1 est activĂ© par l'AMPc produit par l’adĂ©nylate cyclase soluble (sAC). De plus, Epac1 est associĂ© Ă  un complexe macromolĂ©culaire composĂ© du canal calcique VDAC1, de la protĂ©ine chaperonne GRP75 et du rĂ©cepteur type 1 Ă  IP3. Epac1 favorise la formation de ce complexe dans des conditions HX+R pour induire une surcharge de Ca2+ mitochondriale et l’ouverture du pore de transition de permĂ©abilitĂ© mitochondriale. MitEpac1 inhibe aussi l’activitĂ© de l'isocitrate dĂ©shydrogĂ©nase 2 diminuant ainsi la synthĂšse de NADPH et les capacitĂ©s antioxydantes du CM. Dans un modĂšle de CMD induit par un stress mĂ©tabolique (HFD), les cƓurs Epac1-/- sont protĂ©gĂ©es de la dysfonction diastolique, de la fibrose et de l’accumulation de lipides. L’inhibition de Epac1 prĂ©vient des dysfonctions mitochondriales (production de ROS, mort cellulaire, accumulation lipidique, diminution du mĂ©tabolisme oxydatif) induites par le palmitate, un acide gras (AG) lipotoxique. Au niveau molĂ©culaire, cet AG rĂ©gule positivement l’activitĂ© de Epac1 par la palmitoylation de sAC et favorise la production d’AMPc. Epac1 influence Ă©galement le mĂ©tabolisme Ă©nergĂ©tique en modulant l’activitĂ© des enzymes clefs de la ÎČ-oxydation (impliquĂ©e dans la dĂ©gradation des AG) et de l’ATP synthase (impliquĂ©e dans la production d’ATP) favorisant la lipotoxicitĂ© du palmitate. Ayant obtenu la preuve de concept des effets bĂ©nĂ©fiques de l’inhibition de Epac1 dans les stress cardiaques, nous avons caractĂ©risĂ© un nouvel inhibiteur pharmacologique. Cette petite molĂ©cule appelĂ©e AM-001 est cardioprotectrice dans un modĂšle murin d’I/R. AM-001 protĂšge de l'hypertrophie cardiaque, l'inflammation, la fibrose et amĂ©liore la fonction cardiaque lors de l'activation chronique des rĂ©cepteurs ÎČ-adrĂ©nergiques par l’isoprĂ©naline. Au niveau molĂ©culaire, AM-001 inhibe l'action non canonique de GRK5 sur l’export nuclĂ©aire de HDAC5 rĂ©gulant nĂ©gativement le facteur de transcription prohypertrophique MEF2. En conclusion, nos rĂ©sultats rĂ©vĂšlent l'existence au sein de la mitochondrie de diffĂ©rents microdomaines AMPc-Epac1 qui contrĂŽlent les fonctions mitochondriales et suggĂšrent que Epac1 constitue une cible prometteuse pour le traitement des lĂ©sions myocardiques induites par l'I/R ou un stress cardio-mĂ©tabolique prolongĂ©.Le cƓur est un organe Ă©nergivore dont la majoritĂ© de l’ATP consommĂ©e provient du mĂ©tabolisme oxydatif de la mitochondrie. Cet organite joue Ă©galement un rĂŽle central dans la rĂ©gulation de l’homĂ©ostasie calcique, la production des espĂšces rĂ©actives de l’oxygĂšne (ROS) et l’apoptose. Ces fonctions sont dĂ©rĂ©gulĂ©es au cours de l’insuffisance cardiaque (IC). Il est donc important d’identifier les signalisations Ă  l’origine de ces dysfonctions et de les valider en tant que cible thĂ©rapeutique pour le traitement de l’IC. Bien que le second messager AMP cyclique (AMPc) soit essentiel Ă  la fonction cardiaque, il contribue Ă  la progression de l’IC. Cependant, les bases molĂ©culaires de ses effets dĂ©lĂ©tĂšres dans les pathologies cardiaques sont loin d'ĂȘtre Ă©lucidĂ©es. Le but de ce travail fĂ»t de dĂ©terminer les effets mitochondriaux d’une protĂ©ine effectrice de l’AMPc, Epac1. Nous avons Ă©tudiĂ© ses rĂŽles mitochondriaux (mitEpac1) dans deux conditions de stress cardiaque connues pour perturber le fonctionnement de la mitochondrie : un stress aigu induit par une ischĂ©mie reperfusion (I/R) et un stress chronique provoquĂ© par un rĂ©gime riche en graisse (HFD) conduisant Ă  une cardiomyopathie diabĂ©tique. Par ailleurs, nous avons caractĂ©risĂ© un nouvel inhibiteur pharmacologique de Epac1 appelĂ© AM-001 et Ă©tudiĂ© ses propriĂ©tĂ©s cardioprotectrices chez la souris. D’une part, nous montrons que la dĂ©lĂ©tion gĂ©nique de Epac1 (Epac1-/-) chez la souris protĂšge des lĂ©sions de l'I/R myocardique en rĂ©duisant la taille de l’infarctus. L'inhibition pharmacologique de Epac1 par le CE3F4 prĂ©vient de l'apoptose des cardiomyocytes (CM) induite par l'hypoxie/rĂ©oxygĂ©nation (HX+R). Sur le plan mĂ©canistique, Epac1 est activĂ© par l'AMPc produit par l’adĂ©nylate cyclase soluble (sAC). De plus, Epac1 est associĂ© Ă  un complexe macromolĂ©culaire composĂ© du canal calcique VDAC1, de la protĂ©ine chaperonne GRP75 et du rĂ©cepteur type 1 Ă  IP3. Epac1 favorise la formation de ce complexe dans des conditions HX+R pour induire une surcharge de Ca2+ mitochondriale et l’ouverture du pore de transition de permĂ©abilitĂ© mitochondriale. MitEpac1 inhibe aussi l’activitĂ© de l'isocitrate dĂ©shydrogĂ©nase 2 diminuant ainsi la synthĂšse de NADPH et les capacitĂ©s antioxydantes du CM. Dans un modĂšle de CMD induit par un stress mĂ©tabolique (HFD), les cƓurs Epac1-/- sont protĂ©gĂ©es de la dysfonction diastolique, de la fibrose et de l’accumulation de lipides. L’inhibition de Epac1 prĂ©vient des dysfonctions mitochondriales (production de ROS, mort cellulaire, accumulation lipidique, diminution du mĂ©tabolisme oxydatif) induites par le palmitate, un acide gras (AG) lipotoxique. Au niveau molĂ©culaire, cet AG rĂ©gule positivement l’activitĂ© de Epac1 par la palmitoylation de sAC et favorise la production d’AMPc. Epac1 influence Ă©galement le mĂ©tabolisme Ă©nergĂ©tique en modulant l’activitĂ© des enzymes clefs de la ÎČ-oxydation (impliquĂ©e dans la dĂ©gradation des AG) et de l’ATP synthase (impliquĂ©e dans la production d’ATP) favorisant la lipotoxicitĂ© du palmitate. Ayant obtenu la preuve de concept des effets bĂ©nĂ©fiques de l’inhibition de Epac1 dans les stress cardiaques, nous avons caractĂ©risĂ© un nouvel inhibiteur pharmacologique. Cette petite molĂ©cule appelĂ©e AM-001 est cardioprotectrice dans un modĂšle murin d’I/R. AM-001 protĂšge de l'hypertrophie cardiaque, l'inflammation, la fibrose et amĂ©liore la fonction cardiaque lors de l'activation chronique des rĂ©cepteurs ÎČ-adrĂ©nergiques par l’isoprĂ©naline. Au niveau molĂ©culaire, AM-001 inhibe l'action non canonique de GRK5 sur l’export nuclĂ©aire de HDAC5 rĂ©gulant nĂ©gativement le facteur de transcription prohypertrophique MEF2. En conclusion, nos rĂ©sultats rĂ©vĂšlent l'existence au sein de la mitochondrie de diffĂ©rents microdomaines AMPc-Epac1 qui contrĂŽlent les fonctions mitochondriales et suggĂšrent que Epac1 constitue une cible prometteuse pour le traitement des lĂ©sions myocardiques induites par l'I/R ou un stress cardio-mĂ©tabolique prolongĂ©

    RÎles et mécanismes d'action de la protéine Epac1 mitochondriale dans les pathologies cardiaques

    No full text
    Le cƓur est un organe Ă©nergivore dont la majoritĂ© de l'ATP consommĂ©e provient du mĂ©tabolisme oxydatif de la mitochondrie. Cet organite joue Ă©galement un rĂŽle central dans la rĂ©gulation de l'homĂ©ostasie calcique, la production des espĂšces rĂ©actives de l'oxygĂšne (ROS) et l'apoptose. Ces fonctions sont dĂ©rĂ©gulĂ©es au cours de l'insuffisance cardiaque (IC). Il est donc important d'identifier les signalisations Ă  l'origine de ces dysfonctions et de les valider en tant que cible thĂ©rapeutique pour le traitement de l'IC. Bien que le second messager AMP cyclique (AMPc) soit essentiel Ă  la fonction cardiaque, il contribue Ă  la progression de l'IC. Cependant, les bases molĂ©culaires de ses effets dĂ©lĂ©tĂšres dans les pathologies cardiaques sont loin d'ĂȘtre Ă©lucidĂ©es. Le but de ce travail fĂ»t de dĂ©terminer les effets mitochondriaux d'une protĂ©ine effectrice de l'AMPc, Epac1. Nous avons Ă©tudiĂ© ses rĂŽles mitochondriaux (mitEpac1) dans deux conditions de stress cardiaque connues pour perturber le fonctionnement de la mitochondrie : un stress aigu induit par une ischĂ©mie reperfusion (I/R) et un stress chronique provoquĂ© par un rĂ©gime riche en graisse (HFD) conduisant Ă  une cardiomyopathie diabĂ©tique. Par ailleurs, nous avons caractĂ©risĂ© un nouvel inhibiteur pharmacologique de Epac1 appelĂ© AM-001 et Ă©tudiĂ© ses propriĂ©tĂ©s cardioprotectrices chez la souris. D'une part, nous montrons que la dĂ©lĂ©tion gĂ©nique de Epac1 (Epac1-/-) chez la souris protĂšge des lĂ©sions de l'I/R myocardique en rĂ©duisant la taille de l'infarctus. L'inhibition pharmacologique de Epac1 par le CE3F4 prĂ©vient de l'apoptose des cardiomyocytes (CM) induite par l'hypoxie/rĂ©oxygĂ©nation (HX+R). Sur le plan mĂ©canistique, Epac1 est activĂ© par l'AMPc produit par l'adĂ©nylate cyclase soluble (sAC). De plus, Epac1 est associĂ© Ă  un complexe macromolĂ©culaire composĂ© du canal calcique VDAC1, de la protĂ©ine chaperonne GRP75 et du rĂ©cepteur type 1 Ă  IP3. Epac1 favorise la formation de ce complexe dans des conditions HX+R pour induire une surcharge de Ca2+ mitochondriale et l'ouverture du pore de transition de permĂ©abilitĂ© mitochondriale. MitEpac1 inhibe aussi l'activitĂ© de l'isocitrate dĂ©shydrogĂ©nase 2 diminuant ainsi la synthĂšse de NADPH et les capacitĂ©s antioxydantes du CM. Dans un modĂšle de CMD induit par un stress mĂ©tabolique (HFD), les cƓurs Epac1-/- sont protĂ©gĂ©es de la dysfonction diastolique, de la fibrose et de l'accumulation de lipides. L'inhibition de Epac1 prĂ©vient des dysfonctions mitochondriales (production de ROS, mort cellulaire, accumulation lipidique, diminution du mĂ©tabolisme oxydatif) induites par le palmitate, un acide gras (AG) lipotoxique. Au niveau molĂ©culaire, cet AG rĂ©gule positivement l'activitĂ© de Epac1 par la palmitoylation de sAC et favorise la production d'AMPc. Epac1 influence Ă©galement le mĂ©tabolisme Ă©nergĂ©tique en modulant l'activitĂ© des enzymes clefs de la ß-oxydation (impliquĂ©e dans la dĂ©gradation des AG) et de l'ATP synthase (impliquĂ©e dans la production d'ATP) favorisant la lipotoxicitĂ© du palmitate. Ayant obtenu la preuve de concept des effets bĂ©nĂ©fiques de l'inhibition de Epac1 dans les stress cardiaques, nous avons caractĂ©risĂ© un nouvel inhibiteur pharmacologique. Cette petite molĂ©cule appelĂ©e AM-001 est cardioprotectrice dans un modĂšle murin d'I/R. AM-001 protĂšge de l'hypertrophie cardiaque, l'inflammation, la fibrose et amĂ©liore la fonction cardiaque lors de l'activation chronique des rĂ©cepteurs ß-adrĂ©nergiques par l'isoprĂ©naline. Au niveau molĂ©culaire, AM-001 inhibe l'action non canonique de GRK5 sur l'export nuclĂ©aire de HDAC5 rĂ©gulant nĂ©gativement le facteur de transcription prohypertrophique MEF2. En conclusion, nos rĂ©sultats rĂ©vĂšlent l'existence au sein de la mitochondrie de diffĂ©rents microdomaines AMPc-Epac1 qui contrĂŽlent les fonctions mitochondriales et suggĂšrent que Epac1 constitue une cible prometteuse pour le traitement des lĂ©sions myocardiques induites par l'I/R ou un stress cardio-mĂ©tabolique prolongĂ©.The heart is an organ with high energy demand and the majority of consumed ATP is produced from oxidative metabolism of the mitochondria. This organelle also plays a central role in the regulation of calcium homeostasis, the production of reactive oxygen species (ROS) and apoptosis. However, these different mitochondrial functions are dysregulated in heart failure (HF). It is therefore important to identify the signaling pathways leading to the mitochondrial alterations in order to identify novel therapeutic targets for the treatment of HF. Although the second messenger cyclic AMP (cAMP) is essential for the regulation of cardiac function, this cyclic nucleotide largely contributes to HF progression. However, the molecular basis of cAMP deleterious effects in the heart are far from being elucidated. The aim of this study was to determine the mitochondrial effects of a cAMP effector protein, Epac1. We have studied the role of the mitochondrial Epac1 protein (mitEpac1) in two cardiac stress conditions known to disrupt mitochondrial function: An acute stress induced by ischemia reperfusion (I/R) and a chronic stress induced by a high fat diet (HFD) leading to diabetic cardiomyopathy. In addition, we have characterized a new pharmacological inhibitor of Epac1, named AM-001, and studied the cardioprotective properties of this small molecule in mice. Firstly, we show that Epac1 genetic ablation (Epac1-/-) protects against myocardial I/R with reduced infarct size. Pharmacological inhibition of Epac1 by CE3F4 prevents hypoxia/reoxygenation (HX/R)-induced adult cardiomyocyte apoptosis. Mechanistically, Epac1 is activated by cAMP produced by the soluble adenylate cyclase (sAC) to induce cell death. Interestingly, Epac1 is associated with a macromolecular complex composed of the calcium channel VDAC1, the chaperone protein GRP75 and the IP3 receptor 1. Epac1 favors the formation of this complex under HX/R conditions, to induce a mitochondrial Ca2+ overload and opening of the mitochondrial permeability transition pore. In addition, MitEpac1 inhibits isocitrate dehydrogenase 2 (IDH2), thereby decreasing NAPDH synthesis and the antioxidant capabilities of the cardiomyocyte. Secondly, Epac1-/- mice are protected from diastolic dysfunction as well as fibrosis and lipid accumulation induced by HFD. In addition, Epac1 inhibition prevents ROS production, cell death, lipid accumulation, and decreased oxidative metabolism induced by exposure to palmitate, a lipotoxic fatty acid (FA). At the molecular level, we show that FA stimulates Epac1 activity through sAC palmitoylation and the subsequent production of cAMP. Epac1 also influences energy metabolism by modulating the activity of key enzymes of ß-oxidation (involved in AG degradation) and ATP synthase (involved in ATP production), thereby promoting the lipotoxicity of palmitate. Finally, having obtained the proof of concept of cardioprotective effect of Epac1 genetic ablation, we have isolated and characterized a new pharmacological inhibitor of Epac1. This small molecule named AM-001 is cardioprotective in a mouse model of I/R. In addition, AM-001 attenuates cardiac hypertrophy, inflammation, fibrosis and improves cardiac function during chronic ß-adrenergic receptor (ß-AR) activation with isoprenaline (ISO) in mice. At the molecular level, AM-001 prevented the non-canonical action of GRK5 on HDAC5 cytoplasmic shuttle to downregulate MEF2 transcriptional activity. In conclusion, our results reveal the existence within the mitochondria, of different cAMP-Epac1 microdomains that control mitochondrial functions and suggest that Epac1 is a promising target for the treatment of ischemia-induced myocardial injury or prolonged cardio-metabolic stress

    GRK and Epac1 interaction in cardiac remodelling and heart failure

    No full text
    International audienceÎČ-adrenergic receptors (ÎČ-ARs) play a major role in the physiological regulation of cardiac function through signaling routes tightly controlled by the G protein-coupled receptor kinase (GRK). Although acute stimulation of ÎČ-ARs and subsequent production of cyclic AMP (cAMP) have beneficial effects on cardiac function, chronic stimulation of ÎČ-ARs as observed under sympathetic overdrive, promotes the development of pathological cardiac remodelling and heart failure (HF), a leading cause of mortality worldwide. This is accompanied by an alteration in cAMP compartmentalization and the activation of the exchange protein directly activated by cAMP 1 (Epac1) signaling. Among downstream signals of ÎČ-ARs, compelling evidence indicates that GRK2, GRK5, and Epac1 represent attractive therapeutic targets for cardiac disease. Here, we summarize the pathophysiological roles of GRK2, GRK5, and Epac1 in the heart. We focus on their signalosome and describe how under pathological settings, these proteins can cross-talk and are part of scaffolded nodal signaling systems that contribute to a decreased cardiac function and HF development

    THIENO[2,3-B]PYRIDINE DERIVATIVES AS EPAC INHIBITORS AND THEIR PHARMACEUTICAL USES

    No full text
    The present invention relates to thieno[2,3-b]pyridine derivatives for use in the treatment and/or the prevention of a disease selected from the group consisting of inflammation, cancer, vascular diseases, kidney diseases, cognitive disorders, pain, infections, obesity, and cardiac diseases. Indeed, the inventors found that thieno[2,3- b]pyridine derivatives of the invention are inhibitors of the Epac protein and can thus be useful for the prevention and/or treatment of diseases wherein the Epac protein is involved. Particularly, the inventors showed that thieno[2,3-b]pyridine derivatives of the invention are potent and non-competitive inhibitors of Epac and demonstrated that they also inhibit the activation of Epac downstream effectors such as Rap1 in cells

    Role of Perilipins in Oxidative Stress—Implications for Cardiovascular Disease

    No full text
    Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia–reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are conserved intracellular organelles that enable the safe and stable storage of neutral lipids within the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins are increasingly being recognized for playing a critical role beyond energy metabolism and lipid handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial

    Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress

    No full text
    International audienceAims: Recent studies reported that cAMP-binding protein Epac1-deficient mice were protected against various forms of cardiac stress, suggesting that pharmacological inhibition of Epac1 could be beneficial for the treatment of cardiac diseases. To test this assumption, we characterized an Epac1-selective inhibitory compound and investigated its potential cardioprotective properties.Methods and results: We used the Epac1-BRET (bioluminescence resonance energy transfer) for searching for non-cyclic nucleotide Epac1 modulators. A thieno[2,3-b]pyridine derivative, designated as AM-001 was identified as a non-competitive inhibitor of Epac1. AM-001 has no antagonist effect on Epac2 or protein kinase A activity. This small molecule prevents the activation of the Epac1 downstream effector Rap1 in cultured cells, in response to the Epac1 preferential agonist, 8-CPT-AM. In addition, we found that AM-001 inhibited Epac1-dependent deleterious effects such as cardiomyocyte hypertrophy and death. Importantly, AM-001-mediated inhibition of Epac1 reduces infarct size after mouse myocardial ischaemia/reperfusion injury. Finally, AM-001 attenuates cardiac hypertrophy, inflammation and fibrosis, and improves cardiac function during chronic ÎČ-adrenergic receptor activation with isoprenaline (ISO) in mice. At the molecular level, ISO increased Epac1-G protein-coupled receptor kinase 5 (GRK5) interaction and induced GRK5 nuclear import and histone deacetylase type 5 (HDAC5) nuclear export to promote the activity of the prohypertrophic transcription factor, myocyte enhancer factor 2 (MEF2). Inversely, AM-001 prevented the non-canonical action of GRK5 on HDAC5 cytoplasmic shuttle to down-regulate MEF2 transcriptional activity.Conclusion: Our study represents a ‘proof-of-concept’ for the therapeutic effectiveness of inhibiting Epac1 activity in cardiac disease using small-molecule pharmacotherapy

    Cyclic AMP-binding protein Epac1 acts as a metabolic sensor to promote cardiomyocyte lipotoxicity

    No full text
    International audienceAbstract Cyclic adenosine monophosphate (cAMP) is a master regulator of mitochondrial metabolism but its precise mechanism of action yet remains unclear. Here, we found that a dietary saturated fatty acid (FA), palmitate increased intracellular cAMP synthesis through the palmitoylation of soluble adenylyl cyclase in cardiomyocytes. cAMP further induced exchange protein directly activated by cyclic AMP 1 (Epac1) activation, which was upregulated in the myocardium of obese patients. Epac1 enhanced the activity of a key enzyme regulating mitochondrial FA uptake, carnitine palmitoyltransferase 1. Consistently, pharmacological or genetic Epac1 inhibition prevented lipid overload, increased FA oxidation (FAO), and protected against mitochondrial dysfunction in cardiomyocytes. In addition, analysis of Epac1 phosphoproteome led us to identify two key mitochondrial enzymes of the the ÎČ-oxidation cycle as targets of Epac1, the long-chain FA acyl-CoA dehydrogenase (ACADL) and the 3-ketoacyl-CoA thiolase (3-KAT). Epac1 formed molecular complexes with the Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), which phosphorylated ACADL and 3-KAT at specific amino acid residues to decrease lipid oxidation. The Epac1-CaMKII axis also interacted with the α subunit of ATP synthase, thereby further impairing mitochondrial energetics. Altogether, these findings indicate that Epac1 disrupts the balance between mitochondrial FA uptake and oxidation leading to lipid accumulation and mitochondrial dysfunction, and ultimately cardiomyocyte death
    corecore