661 research outputs found

    The odd nilHecke algebra and its diagrammatics

    Full text link
    We introduce an odd version of the nilHecke algebra and develop an odd analogue of the thick diagrammatic calculus for nilHecke algebras. We graphically describe idempotents which give a Morita equivalence between odd nilHecke algebras and the rings of odd symmetric functions in finitely many variables. Cyclotomic quotients of odd nilHecke algebras are Morita equivalent to rings which are odd analogues of the cohomology rings of Grassmannians. Like their even counterparts, odd nilHecke algebras categorify the positive half of quantum sl(2).Comment: 48 pages, eps and xypic diagram

    A Prehistory of n-Categorical Physics

    Full text link
    This paper traces the growing role of categories and n-categories in physics, starting with groups and their role in relativity, and leading up to more sophisticated concepts which manifest themselves in Feynman diagrams, spin networks, string theory, loop quantum gravity, and topological quantum field theory. Our chronology ends around 2000, with just a taste of later developments such as open-closed topological string theory, the categorification of quantum groups, Khovanov homology, and Lurie's work on the classification of topological quantum field theories.Comment: 129 pages, 8 eps figure

    A diagrammatic approach to categorification of quantum groups III

    Full text link
    We categorify the idempotented form of quantum sl(n).Comment: 88 pages, LaTeX2e with xypic and pstricks macros, 3 eps file

    Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras

    Full text link
    We study a special sort of 2-dimensional extended Topological Quantum Field Theories (TQFTs) which we call open-closed TQFTs. These are defined on open-closed cobordisms by which we mean smooth compact oriented 2-manifolds with corners that have a particular global structure in order to model the smooth topology of open and closed string worldsheets. We show that the category of open-closed TQFTs is equivalent to the category of knowledgeable Frobenius algebras. A knowledgeable Frobenius algebra (A,C,i,i^*) consists of a symmetric Frobenius algebra A, a commutative Frobenius algebra C, and an algebra homomorphism i:C->A with dual i^*:A->C, subject to some conditions. This result is achieved by providing a generators and relations description of the category of open-closed cobordisms. In order to prove the sufficiency of our relations, we provide a normal form for such cobordisms which is characterized by topological invariants. Starting from an arbitrary such cobordism, we construct a sequence of moves (generalized handle slides and handle cancellations) which transforms the given cobordism into the normal form. Using the generators and relations description of the category of open-closed cobordisms, we show that it is equivalent to the symmetric monoidal category freely generated by a knowledgeable Frobenius algebra. Our formalism is then generalized to the context of open-closed cobordisms with labeled free boundary components, i.e. to open-closed string worldsheets with D-brane labels at their free boundaries.Comment: 47 pages; LaTeX2e with xypic and pstricks macros; corrected typo

    A categorification of the Casimir of quantum sl(2)

    Get PDF
    We categorify the Casimir element of the idempotented form of quantum sl(2).Comment: 63 pages, xypic diagrams. v2 corrects typo
    corecore