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1. Introduction

The Witten—Reshetikhin—Turaev invariant [22,24] of a 3-manifold presented by surgery along
a framed link is given by summing over labelings of the components of the link by irreducible
representations of the quantum group U, (sl3), then evaluating the corresponding colored Jones
polynomial at a root of unity. Crane and Frenkel [6] conjectured that quantum 3-manifold
invariants could be categorified using the categorified representation theory of U, (sl2). While
the Jones polynomial and colored Jones polynomial have been categorified [3,12,13,23,5], the
problem of categorification at a root of unity has seen little progress.

A universal invariant of knots taking values in (an appropriate completion of) the center of
the quantum Uy (sl2) was constructed by Lawrence [18,19]. This universal invariant dominates
all colored Jones polynomials. The center of U, (sl2) as a Z|[q, g~ '1-algebra is freely generated
by the Casimir element C. For p > 0, let us introduce

oy = ﬁ (Cz — (¢ +2+q—2i)>

i=1

which are monic polynomials of degree p in C2. The universal invariant Jx of a knot K can be
written [8, Theorem 4.5] as
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Tk = ap(K)op.

p=0

The coefficients a,(K) € Zlq, q_l], p € N, determine the Witten—Reshetikhin—Turaev invari-
ant of any integral homology 3-sphere obtained by surgery on the knot K. Therefore it is natural
to seek a categorification of this universal invariant within the context of categorified representa-
tion theory of U, (sl2). Here we take a first step in this ambitious program by categorifying the
quantum Casimir element for U, (sl2).

Igor Frenkel conjectured [7] the existence of a categorification of the integral idempotented
version 4U of the quantum enveloping algebra of sl at generic g. The algebra 4U is the
Zlq, q~']-subalgebra of the algebra U defined by Beilinson et al. [2] and generalized to arbitrary
types by Lusztig [20]. In U the identity element 1 € U,(slz) is replaced by a collection of
orthogonal idempotents 1, indexed by the weight lattice for sl,. We recall the definition of
U, (sl2) in Section 2.1 and U in Section 2.3.

In [17] the third author introduced a categorification U of AU given by the idempotent
completion of an additive 2-category {/ whose objects n € Z are parameterized by the
integral weight lattice of sl,. The 1-morphisms from n to m are given by direct sums of
I-morphisms E1,{t} = &, --- &, 1,{t} where g = ¢1---gr with ey, ..., e € {+, =}, m —n =
22?‘:1 el, &4 = £,6- = F andt € Z. The 1-morphisms £ and F can be thought of as
categorifications of the generators £ and F of quantum sl;. The 2-morphisms are given by
k-linear combinations of certain planar diagrams modulo local relations. In [17] it was shown
that the split Grothendieck ring of U is isomorphic to 4U,

Ko@) = 40, (1.1)

when the ground ring is a field k. In [15] this result was proven with k replaced by the
integers.

The quantum Casimir element for Uy (sl>) has the form

-1 -1 -1
K K K K

C:ZEF_i_w:FE—FHq—_”
(g—97")

12
(g —q1)? (12

This element is central and is preserved by various (anti)linear (anti)involutions defined on
Uy (sly). In this paper we category the integral idempotent version of the Casimir element
obtained from (1.2) by clearing denominators by multiplying by (g —g~")? and projecting via 1,,.
We also multiply by —1 for convenience and obtain the integral idempotented Casimir element
C for U:

¢ =]]cu. (1.3)
nez

Cly, = 1,C:=(—¢"+2—q )EF1, — (""" +4' ™1, (1.4)

= (—¢*+2—q )FELl, — @' +47'"")1,. (1.5)

This element belongs to the center, defined in Section 2.2, of the idempotented ring U.

To categorify the component C1,, of the idempotented Casimir element of U in the form
given in (1.4) we must lift elements g* EF'1,, and qbln to 1-morphisms £F1,{a} and 1, {b}.
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We follow the now standard procedure of lifting powers of g to grading shifts and using
complexes whenever minus signs are present. This requires us to work with the 2-category
Kom(U) of bounded complexes over the 2-category U whose objects are integers n € Z, 1-
morphisms are bounded complexes of 1-morphisms in U, and 2-morphisms are chain maps
constructed from the 2-morphisms in /. We also consider the 2-category Com(i{) which has
the same objects and 1-morphisms as Kom({{), and whose 2-morphisms are chain maps up to
homotopy.

We are looking for a complex with four copies of £F1,, and two copies of 1, with grading
shifts:

EF1,{-2}, EF1,, EF1,, EF1,{2}, 1,{1 — n}, 1,{n —1}.

The minus signs in (1.4) indicate that the terms EF1,{-2}, EF1,{2}, 1,{1 — n}, 1,{n — 1}
should live in odd homological degrees, and the remaining two copies of £F1, in even
degrees.

The positioning of these terms in the complex is naturally dictated by the g-degrees of the
possible maps between them. Negative degree endomorphisms of £F1,, exist only for n > 1,
while there are obvious degree two endomorphisms given by placing a dot on one of two vertical

lines in the diagram of the identity map: ;l and (see Section 3.1 for a review of the

2-category Uf). We can arrange the above four copies of £F1, with the appropriate shifts and
cohomological degrees into a complex just using these maps

? EF1, —Ti

EF1,{2} EF1,{=2}

It ™, 1

where the exact position of the minus sign is unimportant. To find the room for the two shifted
copies of 1,, we observe that clockwise cup and cap 2-morphisms have degree 1 — n, perfectly
matching the difference in degrees of these 1,, and those of the middle £F1,, in the complex,
leading to a commutative square

7 X
W

EF1,

X
/

L.{1 — n} 1,{n — 1}

7/
\

EF1,

These two commutative squares can be glued into a single complex C1,, centered in homological
degree zero:
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il Tt

EF1n{2} EF m EF1n{-2}
!
Clp= @D ® 52
Y fl
1,{1 —n} w EFn 1p{n -1}
S

(1.6)

We call the above complex the Casimir complex. The image of this complex in the Grothendieck

ring of ComU) is C1, expressed in the form given by the right hand side of Eq. (1.4).
Starting with the form of the idempotented Casimir element given in (1.5) we obtain a different

complex:
FEL2) l ? FEL i T FEL{-2)
C'y= P @ (&)
; 11
1 {1 +n} u FEly 1p{-n—-1)}

N
(1.7)

However, we will show that the complex C'1, is homotopy equivalent to C1,. These two
complexes behave well under certain symmetry 2-functors ¥, @, o defined for the 2-category U
in [17], and extended here in Section 3.3 to the 2-categories Kom(l] ) and Com(l] ). In particular,
C'1,, = o(C1_,). These symmetry 2-functors categorify certain (anti)linear (anti)involutions on
the algebras U with the various (anti)linearity and (anti)involution properties being reflected in
the (contravariant)covariant behavior of the 2-functors. Just as one can go between the two forms
of the Casimir in (1.4) and (1.5) using these (anti)involutions on the algebras U, we relate the
complexes above together with their alternative versions obtained by moving the minus signs and
reordering the dot 2-morphisms via these categorified symmetries of U.

Our results can be summarized as follows:

Theorem 1.1. (a) There are canonical mutually-inverse isomorphisms
0’:C1, = C'1,, 0°:C'1, — C1, (1.8)

in ComU). If n < 0 the complex C1,, is indecomposable in Kom(U), and complex C'1,, is
isomorphic to a direct sum of C1, and a contractible complex. If n > 0 the complex C'1,, is
indecomposable in Kom(), and complex C1,, is isomorphic to a direct sum of C'1, and a
contractible complex. If n = 0 complexes C1,, and C'1,, are isomorphic in Kom().
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(b) Under the isomorphism KO(U) = Ko(Com(Z/{)) = AU we have [C1,] = C1,, so that the
complex C1, in Com(U) descends to the component C1, of the Casimir element C of U after
passing to the Grothendieck ring.

(¢) The complex C1,, is invariant under the symmetries ¥ and wo of Kom(U). Symmetry o takes
C1,, = (1.6) o the complex C'1_,, given by (1.7) for —n.
(d) Commutativity: There exists a collection of invertible 2-morphisms of complexes

kx: XC — CX, (1.9)
with inverses
kx:CX — XC, (1.10)

forall X in ComUl).
Naturality: The collection of invertible chain maps kx is natural in the sense that for any 2-
morphism f: X — Y the squares

yc—2X ey cy —X s ye
e cr cr c (1.11)
XC———CX CX —— XC
Kx KX

commute in Com(U), where we use the convention that given a 2-morphism o and a
1-morphism x in U we write ax in place of the composite al, whenever this composite
makes sense, likewise for xa. By construction these invertible chain maps are compatible
with composition in Com(U) given by the tensor product of complexes and juxtaposition
of diagrams. That is, for complexes Y = 1,Y1, and X = 1,,X1,, with CXY1, =
1,,C1,» X1,/ Y1, we have a commutative diagram

KXy

CXY1, XYC1,

XCr1, (1.12)
in Com(Z]).

Parts (a) and (d) are difficult, while parts (b) and (c) are obvious. The indecomposability of the
Casimir and the resulting simplifications are discussed in Section 4.3. The rest of part (a) and part
(c) of the theorem can be found in Proposition 4.1. The construction of the commutativity chain
isomorphisms is given in Section 4.2, while the naturality of these maps is proven in Section 5.

As explained in [14, Section 3.7] an additive 2-category can be viewed as an idempotented
monoidal category by regarding 1-morphisms as objects of the monoidal category. The 2-
morphisms in the 2-category become 1-morphisms in the monoidal category. The composition
operation for 1-morphisms and the horizontal composition for 2-morphisms in the original 2-
category gives rise to the monoidal structure, allowing objects and morphisms to be tensored
together. It is sometimes convenient to view Kom(l]) and Com(ZJ) as idempotented additive
monoidal categories in this way.
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The commutativity and naturality statements in the third property above imply that the
complex C1,, is in the (Drinfeld) center of the additive monoidal category Com(Z]) [9,21,11].
The collection of chain maps «x define an invertible natural transformation of functors k: —QC =
C ® —, where — ® C and C ® — are the endofunctors of Com(l{) given by tensoring on the right,
respectively left, with the complex C1,, for appropriate 7.

The categorification of the Casimir element for quantum sl presented here demonstrates the
increase in combinatorial complexity that arises when lifting structures to the categorical level:
the Casimir complex only commutes with other complexes up to chain homotopies, which are
rather involved. By appealing extensively to the graphical calculus for categorified U and its
symmetries, we are able to study the Casimir complex and construct explicit chain maps giving
commutativity of the Casimir up to chain homotopy. This paper presents new identities that are
used for simplifying 2-morphisms in categorified sl;. We hope that the calculations in this paper
will serve to further illustrate how complex computations can be performed in the graphical
calculus for U{.

2. The Casimir element and idempotented form of quantum sl
2.1. Quantum sly and the Casimir element

The quantum group Uy (sl>) is the associative algebra (with unit) over Q(g) with generators
E.F, K, K1 and relations

KK '=1=K"'K, 2.1

KE = ¢’EK, (2.2)

KF =q7%FK, (2.3)
K—K!

EF —FE=———. (2.4)
q9—9q

For simplicity the algebra U, (s[) is written U. For more details on quantum groups see [10].

Fora > 0 we put [a] = q;:;_’,“, [a]! = [alla — 1]---[1] and E@ = E F@ = 2 we

further define the integral form 4U to be the Z[q, ¢~ ']-subalgebra of U generated by

(ED F@O K g ez, (2.5)

There are several Z[q, ¢~ ']-(anti)linear (anti)automorphisms that will be used in this paper.

Let ~ be the Q-linear involution of Q(¢g) which maps ¢ to ¢~ !.

e The Q(g)-antilinear algebra involution y: U — U is given by
YE)=E, y(F)=F, Y& =K"= ()= fyx)
for f € Q(g) and x € U.
e The Q(g)-linear algebra involution w: U — U is given by
wE)=F,  oF)=E oK =K"

o(fx) = fo(x), forf e Q(g)andx €U,
w(xy) =wx)aw(y), forx,yelU.
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e The Q(g)-linear algebra antiinvolution : U — U is given by
o(E)y=E, o(F)=F,  oK)=K",
o(fx) = fa(x), for f€Q(g)andx €U,
axy) =a(y)a(x), forx,yeU.

The (anti)linear (anti)involutions pairwise commute and generate the group G = (Z»)? of
(anti)linear (anti)automorphisms acting on U. Throughout the paper we will also use the index
two subgroup G| = {1, ¥, wo, Yo} of G and the coset G \ G| = {0, o, Yo, Yo}.

The Casimir element for U is given by

-1 -1 —1 -1
K K K K
c::EF+%:FE+q+q—_12. (2.6)
(g—q7) (g—q7)
It is easy to verify that Ec = cE, Fc = cF and Kc = c¢K. Moreover, ¢ generates the center of
U, and

Z(U) = Q(@)[cl. 2.7
We will be most interested in the element
Ci=—(q—qg Ye=(¢*+2—-¢HEF—q 'K —qgK~ ", 2.8)
= (—¢>*+2—-q¢ )FE—gK —q 'Kk, (2.9)
Of course,
Z(U) = Q@)[C]. (2.10)

The element C belongs to the integral form 4U of U, and we call C the Casimir element.
The symmetries in G preserve the Casimir element:

Y(C) = w(C) = a(C) = C. @.11)

Notice that the involutions ¥, wo, Ywa in G| preserve the form of the Casimir in (2.8) and
(2.9), while the involutions é, a, IﬂE, Yo in G \ G| map one form of the Casimir element in
(2.8) and (2.9) to the other. -

All of these symmetries preserve the integral form 4U of U.

2.2. Idempotented rings and their centers

An idempotented ring A is a not necessarily unital associative ring equipped with a family of
mutually-orthogonal idempotents 1;, indexed by elements i of a set I, such that

A= EB 1;A1;. (2.12)
i,jel
The center Z(A) of A is a subspace of ]_[,.GI 1; A1; consisting of elements ]_[iel z; such that
ZiX = XZj (2.13)

foranyi,j € I and x € 1;Al;. Z(A) is a commutative ring isomorphic to the center of the
category of idempotented A-modules, i.e. A-modules M such that

M = EB ;M. (2.14)

iel
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An idempotented ring A has a unit element if and only if the set / is finite, in which case
1= Z 1;. (2.15)
iel

For unital A, the center of A defined as above coincides with the usual center of A.
2.3. BLMU

The Beilinson, Lusztig, and MacPherson [2] algebra U is the Q(g)-algebra obtained by
modifying U by replacing the unit element with a collection of orthogonal idempotents 1,, for
n ez,

1n1y :Sn,mln’ (2.16)
indexed by the weight lattice of sly, such that

Kl,=1,K =¢"1,,  El,=1,02E = 1, 12E1,,

2.17)
Fl,=1,,F=1,_,F1,.

Similarly, the Z[g, ¢ ~']-subalgebra 4U of U is obtained from 4U by replacing the unit element
by a collection of orthogonal idempotents (2.16), such that

Kl,=1,K =1,K1, = ¢"1,, (2.18)
ED%y = 1424 B9 = 1y12a E@ 1,
FD1, = 1,_90,F9 =1, 2, F91,.

The diagram below illustrates the various algebras considered so far

AUC—— U (2.19)
2 2

L

AU—— 1,
where the rightward pointing arrows are the inclusions of subalgebras, and the squiggly arrows
denote passing to the idempotent form of the algebra. See [20] and the references therein for

more details on the algebra U.
There are direct sum decompositions

U= 1,0, U= P 1.1,
n,mez n,mez
with 1,,(4U)1, the Z[g, g~ ']-submodule spanned by 1, E@F®1, and 1, FOE@1, for
a,b € 7 (these elements are zero unless m = n + 2a — 2b).
The algebra U does not have the unit since the infinite sum > nez Ln does not belong to U;
instead, the system of idempotents {1,|n € Z} serves as a substitute for 1. Lusztig’s basis Bof U
consists of the following elements of U:

() EWFD1, fora,beZi,neZ,n<b—a,
(i) FOE@D1, fora,beZy,neZ,n>b—a,

where EQF® 1, _ = F®OE@7],_ .
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The (anti)involutions £ , w, and ¢ all naturally extend to U if we set
ﬂ(ln) =1y, w(l,) =1_,, o(l,) =1_,.

Taking direct sums of the induced maps on each summand 1,,U1, allows these maps to be
extended to U and 4U. These Z[q, g~ "1-(anti)linear (anti)algebra homomorphisms are recorded
below on some elements of 4U:

©0: ¢ Iy EFP1, > ¢ 1, FYED1_,, (2.20)
0 ¢ 1y EWFP1, s ¢*1_,FPED1_,, 2.21)
Vg lnEOFP1, > g1, EYFO,, (2.22)

where m = n + 2a — 2b. The group G acts on both U and 4U.

There is a natural homomorphism from the center of U to the center of its idempotented form
U that sends x € Z(U) to [ [,z 1nx1,. It is not hard to check that this homomorphism is, in fact,
an isomorphism. Denote by

C = ]_[ 1,C (2.23)

nez

the image of C in U under this homomorphism. Let Cop = [T,e27 14C and Coad = [1,e2241 1nC.
Then C = Cev + Cev and

Z0) = Q@[Cev] x Q@[ Codl. (2.24)
We call C1,, components or terms of the Casimir element C. They are given by

1,C=Cl, = (—¢* +2—q HEF1, — ("' +4¢" ™1, (2.25)
= (4> +2—¢ HFEL, — (""" +¢7 " (2.26)

Components are preserved by the symmetries in G; = {1, ¥, wo, Yoo}
g(Cly) =Cl, (2.27)
for any ¢ € Gi. They are interchanged by the elements in the coset G \ G| = {0, @, Yo, Yo}
g(Cl1,)=Cl_, (2.28)

for any g’ € G \ G. In addition to sending 1, to 1_,, the involutions in G \ G| map one form
of the Casimir in (2.25) and (2.26) to the other form.

3. Brief review of sl(2)-calculus
3.1. The 2-category U

3.1.1. Definition of U

Fix a field k. Here we recall the definition of the k-linear 2-category U = U(sly) introduced
in [17], see also [16,14].
Definition 3.1. The 2-category U is the additive 2-category consisting of

e objects: n forn € Z.
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The hom U (n, n") between two objects n, n’ is an additive k-linear category:

e Objects of U(n, n’): for a signed sequence ¢ = (&1, €2, ..., &n), Where €1, ..., &y € {+, =},
define

E =EE, &,

where £, := £ and £_ := F. An object of U(n, n’), called a 1-morphism in U, is a formal
finite direct sum of 1-morphisms

Elplt) = 1,,E1,{t}

for any ¢ € Z and signed sequence ¢ such that n’ = n + Z;'.’Zl g;2.

e Morphisms of U(n, n'): given objects E1,{t}, E1,{t'} € U(n, n’), the hom sets U (E 1, {1},
Ee1,{t'}) of U(n,n’) are k-vector spaces given by linear combinations of diagrams with
degree t — ¢/, modulo certain relations, built from composites of:

(i) Degree zero identity 2-morphisms 1, for each 1-morphism x in U/; the identity 2-
morphisms 1¢1,{t} and 1, (¢} are represented graphically by

let, LF1,()
n+2 n n—2 n
deg O deg O
and more generally, for a signed sequence ¢ = (&1, €2, ..., &), the identity 15£1n{,}

2-morphism is represented as

n/ “ e n
&, &, &,
where the strand labeled &, is oriented up if &, = + and oriented down if ¢, = —. We
will often omit labels from the strands since the labels can be deduced from the orientation
of a strand.

(i1) For each n € X the 2-morphisms

n+2 n n n+2
2-morphism: ><\ n >< n

Degree: 2 2 -2 -2
2-morphism: . . . n n
Degree: 1+n 1—n I+n 1-n

such that the following identities hold:
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e Cups and caps are biadjointness morphisms up to grading shifts:

n+2 J n+2 | n n l no| n+2
U - (A GD
n n+2

J n nt2
Uf\ _ Uﬂ _ (3.2)

n+2 T n+2 | n n n+2
e NilHecke relations hold:

PR e

e All 2-morphisms are cyclic! with respect to the above biadjoint structure. This is ensured by
the relations:

n n—+2
n n+2
= = (3.5)
n+2 n

‘/’\
n = n >< = n (3.6)
2/
The cyclic condition on 2-morphisms expressed by (3.5) and (3.6) ensures that isotopic

diagrams represent the same 2-morphism in /.
It will be convenient to introduce degree zero 2-morphisms:

I'gee [17] and the references therein for the definition of a cyclic 2-morphism with respect to a biadjoint structure.

34
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where the second equality in (3.7) and (3.8) follow from (3.6). We also write

o

to denote the «-fold vertical composite of a dot with itself.
e All dotted bubbles of negative degree are zero. That is,

n n

Q =0 ifa<n-1, Q =0 ifa<-n-—1 3.9)

o o
for all @ € Z. A dotted bubble of degree zero equals 1:
n n
Q:l forn > 1, O =1 forn<-—1.
n—1 —n—1

It is often convenient to express dotted bubbles using a notation introduced in [15] that
emphasizes the degree:

n n n n
Na n—1)+a [ B (—n—1)4a
so that
n n
deg O = 2« deg O = 2a.
Nt o

The value of @ depends on the orientation, ® = n — 1 for clockwise oriented bubbles and
® = —n — 1 for counter-clockwise oriented bubbles. Notice that for some values of # it is
possible that @ + « is a negative number even though o > 0. While vertically composing a
generator with itself a negative number of times does not make sense, having these symbols
around greatly simplifies the calculus. For each @# + o < 0, where

n n
deg G >0 deg Q >0,
N o

we introduce formal symbols, called fake bubbles, inductively defined by the equation

n n

n n n
O+Ot+~~+@z“+-~ Q+~~+Qt“+~~ =1(3.10)
o &0

&0 o+ Mo
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and the additional condition

n n
e .
/= O =1
&0 &0

Eq. (3.10) is called the infinite Grassmannian relation. It remains valid even in high degree
when most of the bubbles involved are not fake bubbles. See [17] for more details.

e For the following relations we employ the convention that all summations are increasing, so
that 3 *%_ is zero if & < 0.

i n fi n
-/

N+ fr
w1} "

oy

N2

@3.11)

n N
" N
- X > +

><V f1+§i-f3 L)

=n—1 f3ﬂ

n noo_ _f\;i;” + Y Q (3.12)

81+82+83 N+

foralln € Z. In Egs. (3.11) and (3.12) whenever the summations are nonzero they utilize fake
bubbles.

e The additive composition functor U (n, n') x U(n', n”") — U(n, n”) is given on 1-morphisms
of U by

Eolyft') x ELy{t} > Egelp{t +1') (3.13)

forn’ =n+ Z?:l €i2, and on 2-morphisms of ¢/ by juxtaposition of diagrams

/&
/

v
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1

X

)

3.1.2. Relations in U

In this section we collect some relations that follow from the definition of ¢/. These relations
were proven in [17].

BT ST m A, o
Jit+fa=a—1 n

For all n € Z the following equation holds

—

n
J: @l
Q ol
= ) + > (3.15)
fthtfs+fe ®F f n o giteteites 83 gy
=n =—n-2

~

where the first sum is over all f1, f>, f3, fa > 0 with f1 4+ f2 + f3+ f4 = n and the second sum
is over all g1, g2, g3, g4 > 0 with g1 4+ g2 + g3 + g4 = —n — 2. Recall that all summations in
this paper are increasing, so that the first summation is zero if n < 0 and the second is zero when
—2 < n. By rotating this equation and shifting n we also have

%

\UJ
: Oenall e
83

f1+f2+fx+f4 ’+f4 gitgt+g3tgs  M+g4
=n—-2 =—n
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Dotted curl relations:

el )

x g1+g=x+n U
U ahp

One can also show the relations:

2
fi
* Y N S+ 2+ /3 L Sab)
=x+y+n—1 f3m
n LA
4 81
n
n n
- S 2 Q
x y N 81+82+83 L R4

Bubble slide equations:

n n n

®

Y \_

) &+(j—2) &+(j—1)

Nt 0+(j 2) &+(j—1)
n+2
j =1
=Y G- Q
£=0
Q+1 N-f
n

J
= LUt1=0 Q
Q+]

- 2L +©

1457

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Below we collect a few additional identities that have not appeared in the literature previously.
The following relation together with its image under the various symmetries of the 2-category
U will be used extensively in the paper.

Proposition 3.2.

_ 4 = 0. (3.23)

The proof utilizes the NilHecke relations to slide dots as well as (3.16).

Proposition 3.3 (Step Functions).

n
— ifn<0
noo= m (3.24)
0 otherwise.
7N
E g n

— ifn>0
= m (3.25)

0 otherwise.

Proof. This proposition follows immediately from the Dotted Curl Relations (3.17). O

Proposition 3.4.

0

n
_ (3.26)
a1

0 otherwise.

Proof. This proposition follows from the Curl relations in U/ together with the positivity of
bubbles axiom. [J
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3.2. The 2-categories U , Kom(Z/'{), and Com(Z])

3.2.1. Additive categories, homotopy categories, and Karoubi envelopes
For an additive category M we write Kom(M) for the category of bounded complexes in M.

An object (X, d) of Kom(M) is a collection of objects X’ of M together with maps d;

d . di— . d; diy

thl X Xi+1

(3.27)

such that dj+1d; = 0 and only finitely many objects are nonzero. A morphisms f: (X, d) —
(Y, d) in Kom(M) is a collection of morphisms f;: X' — Y' such that

di— . i . i
4 yi-t B i xit+1 2 (3.28)
f:—ll fzi ft+1l
- 1 . M
d Y di—y Y d; Yt dit1

commutes.

Given a pair of morphisms f, g: (X,d) — (Y, d) in Kom(M), we say that f is homotopic
to g if there exists morphisms 4': X! — Yi~! such that f; — g; = h'*ld; + d;_1h' forall i. A
morphism of complexes is said to be null-homotopic if it is homotopic to the zero map.

Definition 3.5. The homotopy category Com(M) has the same objects as Kom(M), and
morphisms are morphisms in Kom(M) modulo null-homotopic morphisms.

The Karoubi envelope Kar(M) of a category M is an enlargement of M in which all
idempotents split. An idempotent e:b — b in a category M is said to split if there exist
morphisms

b—Ssy s

such that e = hg and gh = Id,. More precisely, the Karoubi envelope Kar(M) is a category
whose objects are pairs (b, ¢) where e: b — b is an idempotent of M and whose morphisms are
triples of the form

(e, f,e):(b,e) = (b, €)

where f:b — b’ in M making the diagram

b——b (3.29)

commute. Thus, f must satisfy f = ¢’ fe, which is equivalent to f = ¢’ f = fe. Composition
is induced from the composition in M, and the identity morphism is (e, e, €): (b, e) — (b, e).
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When M is an additive category, the splitting of idempotents allows us to write (b, ¢) € Kar(M)
as im e, and we have b = im e @ im (Idp — e).

The identity map Idp: b — b is an idempotent, and this gives rise to a fully faithful functor
M — Kar(M). In Kar(M) all idempotents of M split and this functor is universal with respect
to functors which split idempotents in M. When M is additive the inclusion M — Kar(M) is
an additive functor (see [17, Section 9] and references therein).

Proposition 3.6. For any additive category M there exists a canonical equivalence

Kom (Kar(M)) = Kar (Kom(M)) . (3.30)

Proof. Define the functor
om: Kom(Kar(M)) — Kar(Kom(M)) (3.31)
as follows. An object of Kom(Kar(M)) has the form

d[_l . dl' i1l d;+|
X,e)= - —— (X', ) — (X' e ) — (3.32)
where el.2 = e¢;,diy1di = 0, and d; = e;11d;e;. Here ei: X' — X'is an idempotent and

di: X' — X'*t!. The functor paq takes this object to the pair in Kar(Kom(M)) consisting of
the complex
di_ . d; . di+l
X:...4>X14>X1+14>... (333)

and the idempotent chain map (..., ¢;, €41, ...). A morphism f:(X,e) — (X', e') in Kom
(Kar(M)) is a collection of maps f;: X' — (X’)' such that the squares

xi — 4 it (3.34)

fzi lfz‘ﬂ

(X/)i T) (X/)i+]

commute, and f; = el’. fiei. The functor p A, takes the morphism f to the “same” morphism { f;}
of complexes equipped with idempotents (..., e;, ej11,...) and (..., ¢}, €] +1, LY.

It is easy to see that pa is fully-faithful. To show pq is essentially surjective note that any
object Y of Kar(Kom(M)) is isomorphic to p M(Y ) for some object Y of Kom(Kar(M)). The
object Y consists of a complex

d:_ .
Y= o —yi di yitl

dit

(3.35)

in Kom(M) together with idempotents e;: Y’ — Y’ such that
ei+ldi = diei. (3.36)
Let Y be the object

di—1ei— diyiei+1

. die; .
(Y1, e;) — 5 (Vi) ) — s (3.37)
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in Kom(Kar(M)). We can define morphisms ¢;: Y — pM()?) and ¢3: pM(I?) — Y in Kar
(Kom(M)) that are both given on Zi as multiplication by e;. Then @291 = Idy and 192 =
Id o (T) showing that Y and paq(Y) are isomorphic. Together with fully-faithfulness of paq
this completes the proof that p o4 is an equivalence of categories. [

Proposition 3.7. For any additive k-linear category M with finite dimensional hom spaces there
exists a canonical equivalence

Com (Kar(M)) = Kar (Com(M)) . (3.38)

Proof. The functor pq descends to a functor
P Com(Kar(M)) — Kar(Com(M)). (3.39)

Given an object X of Com(Kar(M)) we can view it as an object of Kom(Kar(M)). By the
idempotent-lifting property for finite-dimensional algebras [4, Chapter 1] an idempotent of
Com(Kar(M)) lifts to an idempotent in Kom(Kar(M)), and the latter category is idempotent-
complete by the previous proposition. Therefore, Com(Kar(M)) is idempotent-complete as well,
allowing us to define a functor

onm: Kar(Com(M)) — Kar(Com(Kar(M))) =~ Com(Kar(M)) (3.40)

such that :05\4:5/\/1 = IdKar(Com(M)),ﬁMpf\/l = Idcom(kar(M)), showing that pf, is an
equivalence. O

Alternatively, the result follows from [1, Corollary 2.12].

3.2.2. The Karoubian envelope of U

Definition 3.8. Define the additive 2-category U to have the same objects as U and hom additive
categones given by U (n, m) = Kar (U(n, m)). The fully-faithful additive functors U (n, m) —
U(n, m) combine to form an additive 2-functor / — U universal with respect to splitting
idempotents in the hom categories U (n, m). The composition functor U (n',n") x u (n,n) —
U(n,n") is induced by the universal property of the Karoubi envelope from the composition
functor for U. The 2-category U has graded 2-homs given by

HOM;(x, y) := @Homu(x{t}, y). (341
teZ

Theorem 3.9 (Theorem 9.1.3 [17]). There is an isomorphism
y:Ua — Ko@), (3.42)
where Ko(U) is the split Grothendieck ring of Uu.

In [15, Corollary 5.14] this result is proven when the ground field k is replaced by the
commutative ring Z.
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3.2.3. Karoubian envelopes of Kom(U) and Com(Uf)

Definition 3.10. Define Kom(U{) to be the additive 2-category with objects n € Z and
additive hom categories Kom(U)(n, m) := Kom (U (n, m)). The additive composition func-
tor Kom (Z/{(n’,n”)) x Kom (Z/l(n,n’)) — Kom(U(n,n")) is given by the tensor product
of complexes using the additive composition functor on U to tensor 1-morphisms via
composition.

Definition 3.11. Define Com(U{) to be the additive 2-category with the same objects and 1-
morphisms as Kom(U) and 2-morphisms given by identifying homotopy equivalent 2-morphisms
in Kom(U).

Recall that i = Kar(U). By Propositions 3.6 and 3.7 there are equivalences
Kar(Kom(U)) = Kom(d), Kar(ComU)) = Com(u). (3.43)
The 2-categories we consider fit into the following table where the horizontal arrows denote

passage to the Karoubian envelope and vertical arrows stand for passage to complexes and
modding out by null-homotopic maps.

U U = Kar(Uf)

Kom(U) ———— Kom(U) = Kar(Kom(U)) (3.44)

Com(U) ———————— Com(U) = Kar(Com(UA))

3.3. Symmetry 2-functors

A covariant/contravariant functor a: M — M’ extends canonically to a functor
Kar(a): Kar(M) — Kar(M').

An additive covariant/contravariant functor «: M — M’ between additive categories extends
canonically to an additive functor

Kom(a): Kom(M) — Kom(M)

and an exact functor Com(a): Com(M) — Com(M’) between triangulated categories.

Given an exact endofunctor a: M — M these extensions respect the equivalence paq in
(3.31), in the sense that the diagrams
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PM

Kom(Kar(M)) Kar(Kom(M))

Kom(Kar(w)) Kar(Kom(w)) (3.45)
Kom(Kar(M)) o Kar(Kom(M))
Com(Kar(M)) pm Kar(Com(M))

Com(Kar(a)) Kar(Com(ct)) (3.46)
Com(Kar(M)) IV Kar(Com(M))

commute.

In this section we recall several 2-functor involutions w, V¥, o on the 2-category U/ defined
in [17] and extend them to 2-functors on all the 2-categories in (3.44). We use the same notation
for these extended 2-functors.

Denote by U°P the 2-category with the same objects as &/ but the 1-morphisms reversed. The
direction of the 2-morphisms remain fixed. The 2-category U° has the same objects and 1-
morphism as U, but the directions of the 2-morphisms is reversed. That is, U°(x, y) = U(y, x)
for 1-morphisms x and y. Finally, /“°°P denotes the 2-category with the same objects as U/, but
the directions of the 1-morphisms and 2-morphisms have been reversed.

Using the symmetries of the diagrammatic relations imposed on U/ 2-functors were defined
in [17] that categorify various Z[q, q’l ]-(anti)linear (anti)automorphisms of the algebra U. The
various forms of contravariant behavior for 2-functors on U/ translate into properties of the
corresponding homomorphism in U as the following table summarizes:

2-functors Algebra maps

u—u Zlq, g~ "1-linear homomorphisms

U — U°P Zlq, ¢~ ']-linear antihomomorphisms
UuU— U Zlq, ¢~ ']-antilinear homomorphisms

U — UP Zlq, g~ '1-antilinear antihomomorphisms

Rescale, invert the orientation, and send n — —n: Consider the operation on the diagrammatic
calculus that rescales the crossing >< = — >< , inverts the orientation of each strand
and sends n > —n:
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This gives a strict invertible 2-functor w: U — U

w:Ud > U
nt= —n
1,EN FPEX . g% FPL, (s} > 1., FUEP Fo2 ... FUEPT_ (s}, (3.47)

This 2-functor extends to a 2-endofunctor

w: Kom(U) — Kom(U),

nr— —n

) w(di—1) . w(d;) )
(X, d) > e —— w(xt—l) [N w(Xl) - C()(Xl+1) - s ...
fX—>YP o(f)oX)—> o), (3.48)

and a 2-endofunctor on all the other 2-categories in (3.44).

Rescale, reflect across the vertical axis, and send n +— —n: The operation on diagrams that
rescales the crossing >< > — >< , reflects a diagram across the vertical axis, and sends
n to —n leaves invariant the relations on the 2-morphisms of /. This operation

W%@ 0
\ . LYt

~

is contravariant for composition of 1-morphisms, covariant for composition of 2-morphisms, and
preserves the degree of a diagram. This symmetry gives an invertible 2-functor

o:U — UP,
n —n

1, EM FPreer. . g Fhey, (s) s 1, Flego bt phrgay_, (s)

that acts on 2-morphisms via the symmetry described above. This 2-functor extends to a
2-functor

o: Kom(U{) — Kom(U)

n— —n

. o(di—1) ) o (d;) )
(X, d) > e — >O‘(Xl_1) s U(X’) N U(Xl+1) S e
f:X—=>Yr—o(f)oX)— a(Y), (3.49)

and, likewise, a 2-endofunctor on all the other 2-categories from (3.44).
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Reflect across the x-axis and invert orientation: Here we are careful to keep track of what
happens to the shifts of sources and targets

'} {—1}

Shift reversals on the right hand side are required for this transformation to preserve the degree
of a diagram. This gives an invertible 2-functor

YU — U,
nen

1, FPrgn .. g% FPy, (s} s 1,EM FPrE% ... g% Py, (—s), (3.50)

and on 2-morphisms ¥ reflects the diagrams across the x-axis and inverts the orientation.
Since ¥ is contravariant on 2-morphisms in ¢/, this 2-functor extends to a 2-functor

Y Kom(U) — Kom(U),

nr—n
(X7 d) > e ——— W(XH_I) % Iﬂ(Xl) M) l//(Xi_l) — 5.
[iX =Y =>4 () @) = ¥(X), (3.51)

and, likewise, a 2-endofunctor on all 2-categories in (3.44). Notice that Y inverts the homological
degree so that ¥ acts on a complex (X, d) in Kom(U) by (¢ X)' = ¥ (X 7).
These 2-functors are involutive and commute with each other ‘on-the-nose’:

wo = wo, oy = Yo, oY = Yo, (3.52)

generating a group G = (Z,)> of 2-functors acting on all the 2-categories in (3.44). Equivalences
in table (3.44) respect this action. On the Grothendieck group of ¢{ the 2-functors ¥, w, o descend
to (anti)involutions ¥, w, and o on 4U.

4. The Casimir complex

4.1. The Casimir complex and its symmetries

We sometimes represent the Casimir complex (1.6) using the notation

il v T 1l

Ti - e

EF1, (201, {1—n) EFI@EF ]y, EFI{—2}@ly{n—1}.
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or

" fL 1t 1

( EFL) ) Ti AU ( £F1, ) 2’ ( EF11-2) )

1, {1-n} EF1n 1p{n—1}

4.1

where the underlined term signifies homological degree zero. We will interchange freely between
these methods of depicting the complex C1,,.

The placement of minus signs in the above complex is arbitrary as long as each square
anticommutes. In fact, we get different placements of the minus signs and dots using the
symmetry 2-functors defined in Section 3.3:

¥(C1,)

Y Il T4

() fl v () O

1, {n—1}

4.2)

ow(Cl,)

[ 10T

i ( e ) m ~ ( £7 ) M ( . )

1. {1-n}

Lu{n—1)

(4.3)

owy(Cl,)

i Il
1LY

iyl
) ()

EF,

—

EFnL2)
1 {1-n)

L (n-1)

4.4)

It is trivial to check (see also Proposition 4.1) that these complexes are all isomorphic to the
Casimir complex C1,,. We will write G; = {Id, ¥, wo, Ywo} for the subgroup of symmetry
2-functors in G = (Z,)? that preserve the Casimir complex.

Just as the symmetries in G \ G| = {w, 0, Yo, Yo} interchange between the two forms of
the Casimir element o
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G\G,

T

(g2 42— DEF —g 'K — gk~ (~q*+2— ¢ )FE —qK —q~ 'Kk,
G\G,

we can write down a categorification of the idempotented Casimir element in the form

(—q* +2-¢ HFEL, — (¢ +4")1, 4.5)

by applying symmetry 2-functors in G \ G; = {w, 0, Yo, Yw} to the Casimir complex C1_,.
Depending on which 2-functor in G \ G is chosen, we will get a different placement of minus
signs and dots:

o(Cl—y)

It
) ey

FEly

ST 1

N ( FEIR{-2) )

| Fen
1n{14n}

o(Cl_p)

15{—n—1}

(4.6)

i
HE) ey

FEly

At

f\ 7\[\ ( FEI{-2} )

_ ( Fen
1 (140} In{—n—1}

o (Cl—_p)

“4.7)

_iT \J
l? - (mn)

T4

f\ f\ ( FEI{-2) )

B ( FE1,(2) )
1p{1+n}

FEL, In(-n—1}
4.8)
@y (Cl_p)
1P Y A
- () A (o AR )

4.9)
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The first complex is identical to the complex C'1, in (1.7). The four complexes above are
isomorphic to one another in Kom(U{). In Proposition 4.1 we will show that they are homotopy
equivalent to the complex C1,,.

Proposition 4.1. (a) For any g € Gy and g € G \ G there are chain isomorphisms C1, ~
g(C1,) and homotopy equivalences C1,, ~ g'(C1_,) given by chain maps

¥
o(C1_,) oled) oY (Cl_y)
o X
QU o (0°®) W(@")
B e Yo @) (4.10)
. oV
c1, — vew
o s l S
o(Cl_,) v oy (Cl_,)
= w(e¥) =
0 V@)
@) o)
o (Cly) o (Cly,)
ocw(e¥)

where the solid lines represent chain isomorphisms and the dotted lines represent chain
homotopy equivalences. We denote the inverse of a map 08 by 08 for g € G.

(b) The triangles on the left and right in (4.10) commute and the four remaining squares
anticommute.

(¢) Complexes C1,, and C'1,, are homotopy equivalent.

Proof. We define explicit chain isomorphisms

oY o
T T Ty
C1, ¥ (C1,) c1, ocw(Cl,),
o~ o~
oY il

as well as a homotopy equivalence

o

o
TS

C1, o (Cl1_y).
\M/

©

While the maps o¥ and o°“ are rather uninteresting, it is convenient to fix them.
Define Q‘/’: C1, — ¥ (C1,) and its inverse 5‘/’: ¥(C1,) — C1, by

( Tl ) ( Tl Tl) (Tl 0) 4.11)

0 -1
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@)= 1) (y)oz_(ﬂ H)

(@), :=( u _01 ) 4.12)

where C1,, and ¥ (C1,) are given in (4.1) and (4.8). The map ¢°“:C1, — ow(C1,) and its
inverse 0°“: o w(C1,) — C1, are given by the chain maps

(g"w>_1:—(u ‘l’) (aff«))oz—(ﬂ u) (gw>+]:-(H °) (4.13)

@), :=( u ‘: ) @) :=< Tol Tol > @)1 :=( - N i ) (4.14)

with cw(C1,) given by (4.3). We sometimes express chain maps using cube-like diagrams. For
example, the (rather obvious) chain maps 0°®:C1,, — ocw(C1,) and ¢°“: cw(C1,) — C1, can
be depicted as

EF1.{2} T¢ »EF1, -t y EF1,{-2}
) -
W‘q\
Te
n{l—n} EF1, >1,{n—1}
et ~ 7%

vl fef®

EF1,{2}

1,{l —n}
where
07" = 05" = 0f" = ~0§” =lgr1, " = " = 1di,. (4.16)

and

07 =05"=04"=—-05" =ldrg, 05Y =—0¢” =1dy,. 4.17)
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The interesting maps here are ¢?:C1, — o (C1_,) and its homotopy inverse 0%: o (C1_,) —
C1,, given by the diagram

£F1,{2) il , =

y EF1,{—2}

FE1,{2) LF —47

47T

1%

1,{1+n} s FE1,

where

o _ o _ 0 __ O __ o __ _ o _ kjlzl
91_95_96_97_>< Q=" 6= Z )

I
% =07=-< B=—p H=- D ¢

fit 1 o

=n—1

a=-() w=—-U m-- ¥ Y4 w-Q
N+n fit+fa fh N1

=—n—1
The chain homotopies 07 0% — Id >~ 0, 0°0% — Id >~ 0 are given by

h1

EF1,{2} 7l L ii’ EF1,{-2}
T ha il hs
1,{1—n} EF1, — & S1.{n—1}

~J &___\___/

ha
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P il e —
FE1,{2} 11 FE1, ) FE1,{-2}
&y
47T R,
1,{1 +n} =
where
L, A
N
AR e
fi+forfs , WS i h iy fih g
=n-2 f3ﬂ =n—1 =n—1 2
(4.20)
o )
’ ’ Q ’ Q ’ fi
hy =hy=— Z hy = — Z &+ /> hy = ZQ
git+gtes W& fit+/2 fh fith N8
=rty—n—2 gy =—n—1 —al1 M
4.21)
One can verify the following equations
0°0° —1d = hd +dh, (4.22)
0°0° —ld=h'd+dn'. (4.23)
The chain maps just defined satisfy
o(”) =20, o@") =¢", (4.24)
veh=-e". v@"H=-2" (4.25)
w(@’”) =0 (@°"), w(@°”) = a (7). (4.20)

To prove part (b) the proposition one can check by direct computation that the front square in
(4.10) anticommutes. The back solid square is just o applied to the front solid square so it also
anticommutes. The leftmost square commutes on the nose and we define maps

0” :=0(0°%) 0 0? 0¥ :=0% 00 (07%), (4.27)

using these commutative squares. The rightmost square is just ¥ applied to the leftmost square
so it also commutes on the nose. The top square can be shown to anticommute. After observing
that Yw(0?) = Ywo(0°) and w(0”) = wo (0?) the anticommutativity of the bottom square
follows since it is just wo applied to the top square.

Part (¢) follows immediately from part (a) since C'1,, = o (C1_,). O

Theorem 3.9 and the results in Section 3.2 imply that
Ko (Kar (Kom(U))) = Ko (Kom (Kar(U))) = Ko (KarU)) = KoU) = 4U. (4.28)
Under this isomorphism

[C1,] =C1,. (4.29)
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4.2. Commutativity of the Casimir complex

4.2.1. Commutativity chain maps &~ and ?‘

A. Beliakova et al. / Advances in Mathematics 230 (2012) 1442-1501

Definition 4.2. Define chain maps £~ = £71,: 7C1, — CF1, and 'g‘- = g_ln:Cfln —
FC1, as follows:
EFF1,{2} LR » EFF1, ~Tel » EFF1,{-2}
A st N
4kl
L EFF1 Al F1,{n -3}
& |& 5 | ’
& & &
» FEF1, ot | {—2}
M
» FEF1, » Fl,{n—1}
(4.30)
W Q)
- P W fa
f1+f2+f3+f4 zf (Ix
1§f3
§ = - i &% p
VA fi4 ot f: f3
ARl Y
1<f3
%‘ZV— s G
_ Sitfa+f3+fa f; /A{,
~ ~ a5
_ h
" ZX “atnl & 5
1:n2_l 3
AR AR
5 7 a P e
) V/\ h+htfs [ /‘(i ”
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/i _ fi
AR

g =X |-
fith+f 7O fitfa=n a1
~ i —n—1 { 3 lffl
1<fi

1 1
58_2 N4 + Sn1 59_ ZI/ %_ 6n,l
G N

and the grading shifts in the top face of (4.30) come from the fact that CF1,, = C1,_,F1,,.
The map £~1,, is defined via £ ~1,, using symmetry 2-functors:

E L =F0" oy L)ool F. 4.31)
More explicitly,

R _
i Z Y Hsz SZ_ZZ

fithtfs
=n—1
1<fi
. 1
’5-3_2_ + (Sn,l + 8n,1
a1

/%-\4_ =\>
é\_ =
’ {\Q f1+f2+f3 ;V\V 0+f2

& = —>< J +
° f14§+f3 v sz

=n—1

R Nt/
577 — f?
, f1+fz+f%+f4 /‘Q \ +f4

=n-2
% A
§ = /% > \3

e N AN

12}3

J 4

Si+2+ 13 Pudy

=n—1

1<f3

Remark 4.3. Note that when n < 0 all terms involving bubbles are zero.
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Proposition 4.4. The maps £~ and E‘ defined above are mutually-inverse chain homotopy
equivalences between FC1, and CF1,,.

Proof. To check that the maps £ and /E\_ are chain maps it suffices to verify this claim for the
map £~ since £~ is defined from £~ via (4.31). This is proven by direct computation.

Below we give explicit chain homotopies Id — & &~ = hd +dh and 1d — & €~ = h'd +d’
showing that £~ and £~ are mutually-inverse homotopy equivalences.

ha hy

/_\ /_\
EFF1,{2} Pl EFF1, Ti‘Lf — EFFL{-2}

F1l,{1+n}

® ] -
k! ht

T Y™ N S T Y
FEF1,{2} 11l » FEF1, -1k FEF1,{-2}

To simplify notation we write

1 ifn=>0,
On) := {0 ifn < 0. (4.33)
" ZT X ' f+f¥f+ff
e L (4.34)
Jf2
hy = . Qf —hy=hy =
3 3
el 4.35)
h !
me| X+ X AN om-- X
f1+f2+f3+f4/‘3§, f2‘+f4 fi+fa+f3 J2 S+fs
=n—3 =n—2 (436)

e/
TR PR o B )
fit+fotfs sm 437)

=n-2
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n O n
hy = - n o= O(n-1) TR
e A A e LS

h; = - + Z fIsz = - z sz
I L St a5 fith Y
=n— =n-—
1<h (4.39)
\J Ufa Uﬁ
e e Yy = X)X
41 f|+f2-01f3 Pudy f1+f] &t f2
=n— —n_
1<h (4.40)
\J\ n \J e,
hg = — + n = 0(n-1) - Z hO
n fljfzjifs Arfs M

(4.41)

The rather nontrivial computation that these maps are the required homotopies is omitted from
the paper. [

4.2.2. Commutativity chain maps €+ and €

Definition 4.5. We introduce chain maps

ET =£T1, :=E0°? o wo (§71,) 0 0°“E:CE,, — EC1, (4.42)
and
ET =Et1, :=0"“Cowo(E1,) 0 E0°“: ECL, — CEL,,. (4.43)
The diagrams
£t &t
C&l, &£Cl, &£C1, C&l,

0°0E £oo@ £ 2°vE (4.44)

ocw(C1,)E1, T Eow(C1))1, Eow(C1)1, T ocw(C1,)E1,

commute by definition.

Proposition 4.6. The maps £+ and §+ defined above are mutually-inverse chain homotopy
equivalences between EC1,, and C&1,,.
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Proof. The proposition follows at once from (4.42), (4.43), and Proposition 4.4. [
4.3. Indecomposability

4.3.1. Indecomposability of Casimir complexes

Since 1, is indecomposable for all n, morphisms 1,{1 — n}, 1,{n — 1} are as well. The
I-morphisms £F1,{-2}, £F1,, and £F1,{2} appearing in various direct summands of the
complex C1, are indecomposable when n < 0. Assuming n < 0 each of the eight maps
describing the differential in C1, belongs to the graded Jacobson radical of the category U(n, n).
This implies that C1,, does not contain any contractible summands if n < 0.

Proposition 4.7. The complex C1,, given by (1.6) is indecomposable in Kom(UA) ifn<0.

Proof. Assume n < 0 so that C1,, consists of 6 terms, all indecomposable. Those terms belong
to the category U(n, n), which is Krull-Schmidt with finite dimensional hom spaces.

There are no homs (of degree zero) 1,{1 — n} — E£F1,{2} for any n. The degree zero hom
space £EF1,,{2} — 1,{1 —n} (for n < 0) is nontrivial only when n = 0, and then it is spanned by
the diagram /™ . Consequently, (C1,)"! = £F1,{2} @ 1,{1 — n} has only one possible direct
sum decomposition for n < 0, and a one-parameter family of direct sum decompositions for
n=20

Clp)™" = X @& 1o(1}, (4.45)
where X = £F1y{2} is the image of £F1¢{2} in (Clp)~" under the homomorphism

(o)

EF16{2) EF16{2) ® 1o{1} (4.46)

for a € k. Any direct sum decomposition of (C1,)° = E£F1, & EF1, is determined by a
2 x 2 invertible matrix with coefficients in k. There are no homs (of degree zero) EF1,{—2} —
1,,{n — 1}, and the degree zero hom space 1,,{n — 1} — £F1,{—2} is nontrivial only when n = 0,
and then it is spanned by X_/. Therefore, for n < 0 direct sum decomposition of (C1,)! is unique,
and for n = 0 any direct sum decomposition in U(0,0) of (Clp)! = EF1p{—2} & 1p{—1} has
the form

Cl)! ~EFL{—2} @Y (4.47)
where Y ~ 1g{n — 1} is the image of 1yp{—1} in (C1p)! under the homomorphism

(")

1o{—1} EF1o{—2} @ 1p{—1} (4.48)

for some b € k.

Suppose that for some n < 0 there exists a nontrivial direct sum decomposition C1,, >~ C; ®C;
in Kom((]). Then, from the above discussion, we know that the summand 1,{1 —n} C (C 1,)!
must be either in C; or C;. We can assume it belongs to C;. Applying the differential in C1,



A. Beliakova et al. / Advances in Mathematics 230 (2012) 1442—-1501 1477

and the classification of direct sum decompositions of (C 1,)° we see that C; must contain the
diagonal summand of (C1,,)°, the image of

(1)

EF1, EF1, ® EF1,. (4.49)

Further application of the differential and very few available direct sum decompositions of (C1,,)!
tell us that C; must contain the summand £F1,{—2} of (C1,)".

If (C)~! # 0, then (C2)™' = X, described above, for some a € k. Then dX must lie
inside a summand of (C1,)° isomorphic to £F1,. A simple computation shows that this is
impossible. Therefore, (C2)~' = 0 and (C_;) = (C1,)~!. Applying the differential to (C;)~!
we quickly conclude that (€)° = (C1,)? and then (C))' = (C1,)'. Hence C; = 0 supplying a
contradiction. [

Corollary 4.8. The complex C'1, = o (C1_y,) is indecomposable in Kom@U) if n > 0.

Assume n < 0. Since C1, and C’'1, are isomorphic in ComU) by Proposition 4.1, and
FE1, = EFL, @1, = 5]-'1,1 dl,{n—1}®1,{n—-3d - 1,{1 —n}, we conclude
that C'1,, is isomorphic in Kom(U) to the direct sum of C1,, contractible complexes

0——Tfn—1-2042) 1, n—1-2042)—0, O<l<n—1
(4.50)

concentrated in cohomological degrees —1 and 0, and contractible complexes

0— 1 n—1-20-2) s, n—-1-20-2)— 0, O<t<n-—1
4.51)

concentrated in cohomological degrees 0 and 1. When n = 0 complexes C1, and C'l, are
isomorphic in Kom(U) via Proposition 4.1.

When n > 0 there is a similar isomorphism in Kom(l)l) between C1,, and the direct sum of
C'1, and contractible complexes.

In the complex C'1,, = 6(C1_,) the 1-morphisms 1,{1 +n}, 1,,{—n — 1}, FE1,{-2}, FE1,,
and F&1,{2} in the direct summands are all indecomposable when n > 0. In this way, the
symmetry 2-functor o plays an important role allowing us to switch between complexes C1,, and
C'1,.

The commutativity chain maps studied above reduce drastically when we work with the
indecomposable version of the Casimir complex. Below we collect these maps for later
convenience.

4.3.2. Chain maps £~ and E‘ in the indecomposable case
When n < 0 the maps in Definition 4.2 simplify to

51 soa | oK |
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55=56=%—% Ss=—£ €9=—Jm £ =0
S O I S R

n

v | 5 54 5]

In the diagrams above we have omitted the label n on the far right region of each diagram for
simplicity. We will sometimes make use of this convention in the following sections when the
labeling of each region is clear from the context.

4.3.3. Chain maps €+ and €* in the indecomposable case

For n < 0 the chain maps é+:CE1, — EC1, and £T: £C1, — CE1, defined in (4.42) and
(4.43) can be written as

EEF1,{2} EES »EEFL, — )Tr“ » EEFL.{—2}
T -
T4
E1.{1+n} T SEEFL, —— Trr | »E1,{—1—n}
& & | & & & e 1
& 5
&
g |&
EFEL{2} T »EFEL, i EAI EFEL{-2}
J
E1l,{n+1} U7 $EFEL, AT »E1,{n -1} 452)

s;=53=@—?§2 g7+=_$ g;Z_I/XT
geu=l -5 &Y a7
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4.3.4. Chain maps o (™) and o(’é\*) in the indecomposable case

When n > 0 it is useful to work with the indecomposable in Kom(a) complex o (C1_,)
instead of C1,,. For n > 0 the maps

&1, = 0E 1_442) 1 Fo(Cl_y) > 0(Cl i) F1, (4.53)
£, 1y = 0(E 1 y12) 10(Cloyi2) F1, — Fo(Cly) (4.54)

simplify to the form

FFEL{2} 11T » FFEL, FFEL{-2}
L S
TL}

- 4T
LA
F1{1+ L — FFe, ~la — F1,{-n -1}
£ )8

(& h (&5 )3 (& J\ (&r )s (
1) - &)
£o )a B -
(65 )s (& )s
E) _ =14
FEF1,{2} 11 FEF1, — T4, rerif—op ©
e
\ L
41T & Tl il
}_ln{_l +n} r.FE.Fln ).F].n{—’fl-i- 1}
= S 4. (4.55)
where

E=E) =£<E>ﬁ - % (E;)z=\J l E )3 =— J:
)5 { >< E e = E)s =% - % (?;)7=—l v
E)1 = (€])3 =m - f%i &)2 { ~ ()4 { ><
E)s = (E)s =f<~>£ - & ()6 = — } E ) =— ~ J

4.3.5. Chain maps o (§%) and 0(3"’) in the indecomposable case
For n > 0 the chain maps
EFl, :=0(E1_,2) :0(Cl_,_2)E1, — E(C1_,) (4.56)
EX1, :=0(ET1 ) :Ea(Cl_,) — o(Cl_,_2)EN, (4.57)
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simplify to the form

FEEL,{2} 1T FEEL, - HTT » FEEL{-2}
\

— T »E1,{—n — 3}

\ -
Vs | |E e

\ @&
\" -T47

s EFEL {2} &

Eln{l +TL} r(g}'-gln ‘81.”{—’]’{.— ]_}
T =T (4.58)

where

EHy = Es =f<>j - ?ij EH, =T J @:)3:4
ED)s =>< T EHe = E)g =m - m <§:>7=—AU T
<s:>1:<s;>3=% - Qﬁ €5 = m] <s:>4:><[
@:)5:@:)8:% - Qﬁ @:)6:4 @:)7:{ N
VAR

4.4. Symmetries of the commutativity chain maps

Recall that given a 2-morphism « and a 1-morphism x in U/ we write ox in place of the
composite o1, whenever this composite makes sense, likewise for xa.

The following propositions give several alternative characterizations of the various
commutativity chain maps.

Proposition 4.9. For all n € Z the equalities in Kom(U)

E 1, =F0" oy (1) 00" F (4.59)
£71,=0"FoyE 1,) 0 Fo (4.60)
£11, =07 oy (ET1,) 00V € (4.61)
£, =0VEo0 v (ETL,) 0 EoY (4.62)

hold.
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Proof. Note that (4.59) is how the map E’ was defined. Eq. (4.60) follows from the strictly
commutative square

FC1, CF1,
—1d —1d
Fo¥ FCl, ——— CF1, oV F (4.63)
/ : V") F
Fy@") \
Fy(O1, — v(C)F1,
yE)

where the triangles commute since ¥ (0¥) = —o¥, ¥ (%) = —o¥, and o¥ has inverse p¥ by
Proposition 4.1. The bottom square is ¥ applied to (4.59).

To prove (4.61) consider the diagram:

%—+
C&1, EC1y,
Y V
ow(E™)
cw(C)&1, Eow(C)1,
ovE cw(Fo¥) cw(@?YF) g (4.64)
Yvow(C)EL, — Evow(C)1,
owy(ET)
L -y @7*)E =&Y (°?)
V(C)EL, = EY (O,
YET)

The bottom square commutes on the nose since it is i applied to the definition of E* in (4.43)
with two minus signs distributed through the map. The top square is the definition of £ in (4.42).
The center square is o w applied to (4.59). Noting that

cw(Fo¥) =ocw(V)E (4.65)
cw@VF)=Eow@Y) (4.66)

the left and right squares commute since
V@™ 00" = —0w") o™ Y(™)od" = —ow@") o™ (4.67)

by Proposition 4.1 part (b). Eq. (4.62) follows from (4.61) by applying i and arguing as in the
proof that (4.59) implies (4.60). O
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Just as the maps £+ and §+ are defined from £~ and é using the symmetry o w, the following
proposition characterizes £~ and é in terms of £ and & ET via the symmetry o .

Proposition 4.10. For all n € Z the equalities in Kom(U)

=0°°F o wo (§T1,) o Fo® (4.68)

£1,
£71, = F0°° owo (11,) 0 0°“F (4.69)

hold.

Proof. The first equation follows from the commutative square

Fei, i CF1,
\ /
Fooo FCl, - CF1, Fooo (4.70)
%5):?060(@0@) aw(cf@“‘”)ww@'X\
Fow(C)1, oGh) ocw(C)F1,

where the bottom square commutes on the nose since it is o applied to the definition of £ . The
left and right triangles commute on the nose since cw(0°%) = 0°% and cw(E°®?) = °® and

0%® has inverse 9°“ by Proposition 4.1. The second claim in the proposnlon is proven similarly
using the definition of €*. [

Notice that there are four equations in Proposition 4.9 but only two in Proposition 4.10. The
missing equalities are definitions (4.42) and (4.43).

Proposition 4.11. For all n € Z the equalities (=) and homotopy equivalences (=) hold.

£1, =0°F oo 1_p42) 0 FO° (4.71)
&1, 2 F0° 00 (E 1_yi2) 00" F (4.72)
£71, =60 001, 2) 00 (4.73)
£, ~0°E 00 (ET1_4_2) 0 E0°. (4.74)

Proof. We need to show the equality of two chain maps in Eq. (4.71). Each is given by three two-
by-two matrices and we check the equality of coefficients one by one. That is twelve equations to
check. Here we prove just one of the more complicated equalities of matrix entries. For example,
the equality for the upper left term of the first matrix is

E7 Ly =0 F o0 (& 1n2) 0 Fof +05F o0&y 1_n42) 0 Fof
+ 07 F 00 (&5 1-nt2) 0 FOS + 05 F 00 (€5 1_p42) 0 FoS. (4.75)
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One can check that

n n
07 Fo (7(?171_,,_,_2) oFof = - — 4.76)
fithtrs 0
=—n+1
' 1<fi
n n
= - 4.77)
where the summation term is zero by the dotted curl relation (3.17) since
& b
1
Z - Z Z n (4.78)
fitftfs 3 " fi+h+f git+g O
=—n+1 =—n+1 =n—-2+f3 LRES)
I<fi 1<fi

and the for both summations to be nonzero we must have —n + 1 > O and f3 +n — 2 > 0 which
is impossible since f3 < —n + 1. Similarly,

&g |
=R n
BFooE lpoFof == 3 ng =0 (479)
fitf &1+& fi
=-n+l =n-3 @Ff,
1<fi
since the summation indices can never both be non-negative.
We also have
dg
~ n n
07 F 00 (€5 1-p42) 0 Fo§ = = ) &% (4.80)
81+82
N =n—2 ™y
and
dg }
~ n
5(37]:00(54 1_n42) 05':93 = - Z Qi/ (4.81)
81182
BTN

Hence, Eq. (4.75) amounts to proving the equality

| A _dg,
n n /5 n O ’ } n
£, = y - + DR (4.82)
/ M 2:—% / ~
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Using the NilHecke relation (3.4) and cancelling terms we can write

Now we can apply (3.15) to both terms on the right-hand side, sliding the bottom right crossing
in each diagram through the diagonal line. Note that after applying (3.15) the location of the dots
above produce some terms that cancel leaving only

_ q1+] g4 — 91 q1+l
n T Q n Q
n+gztgs W Gl+tn+0‘; 02 93
+ga=-n +g4=-n (4.84)

where the last two terms can be shown to be zero by simplifying the dotted curl and arguing as
above. Therefore,

n n
- - n n
(4.85)
N §< 7 ig{ +f?<”
(4.86)

w344 2 B) -y Bt 8

fit+fa+fa h+fatfs

=n—3 =n—3

(4.87)

Now plug this into the right-hand side of (4.82), use the identity decomposition equation
(3.12) on the last three terms above and note that the additional bubble terms arising from the
application of (3.12) vanish by considering the conditions on the summation indices as above.
After reordering the non-vanishing terms of the right-hand side of (4.82) we are left with

Ufl

-9y 2 e
ﬁ+ﬁ+ﬁ

=n-3 (J\j_l

Ufl \..’gl}
Ly ) o @89
fHith+f g1+8&2
IV VAN
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By rescaling the third term and simplifying the last two terms, the above becomes

Ufl
f1+f2+f3 7 f1+f2+f3
=n-2 3 =n-3
lgfé /m 1<f3

But by sliding the bubbles using a rotated version of (3.21) we can simplify the last two
terms

e/

o ol
Z Q 2 - Z sz 2 Z Z ftl—g) g1+1, Q

A-g2

fli,{z_'gfi‘ /‘@ fl:f_-gfé (.{/é fli-TJ:z_-st gl_J}gz f3m
1= 1<f; 1< f3

e/

- D D (ftl-g) §
f3m

fit+f2 +f3 g1 +f92

=n—2 =J2
].<fg
fe/
f2

-- ¥

f1+fz+f3+f4 13

12
=n—2 m

1<f3 (4.90)

proving Eq. (4.75). The rest of the proof of (4.71) follows by many more computations analogous
to the one above.

Egs. (4.72)—(4.74) follow by applying various symmetries to (4.71). The left and right hand
sides of (4.72) constitute the perimeter of the following diagram

CF1, £ Fel,
\ /
o F cF1, - Feu, o 4.91)
%)::rw)f a@m:%
o(C)F1, Fo(O)1,
© o(E"1_,42) ©

Since 0(0%) = 07 and 0(Q%) = 7 the left and right triangles commute up to homotopy by
Proposition 4.1. The bottom square is o applied to (4.71) with parameter —n + 2.
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Eq. (4.73) follows from the commutativity of the diagram

§+
Cc&1, £C1,
Qawg (c/z)\ofu 7
cw(C)El, oot Eow 01,
o€ 0 F) 0 (F7) £5° (4.92)
w(©)El, _ 001,
w(E7)
0 (07°)E=0(07")E Eo(@°?)=E0(0°®)
s ()€1, _ S0 01,
o(Eh)

Here w(0°F) = w(p?)E and w(FQ°) = Ew(Q?), the left and right squares commute on the
nose since

Qw,aw OO'(QUw) OQO' — Qaw’ 'Qwu OU(’Q\aw) O'Qwo,ow ='Q~0w (4.93)

by Proposition 4.1 part (b). The center square commutes since it is w applied to (4.71). The
bottom square is o applied to the definition of /E\"’, where we used that o> = Id. The top square
commutes by definition of £,

A similar homotopy commutative square to (4.91) shows that (4.74) follows from (4.73). O

Proposition 4.12. For all n € 7Z the equalities (=) and homotopy equivalences () hold.

£71,=0"FowEt1_,) 0 Fo® (4.94)
£71, ~ Fo% ow(ET1_,) 0 0°F (4.95)
ET1, = 0% cw(E 1) 00" (4.96)
EH1, ~ 0% ow(E1_,) 0 E0°. (4.97)

Proof. The proof follows from Proposition 4.11 and the definitions of £ and §+. For example,
the first two equations are proven by the diagrams

Crl, ) Feu,

N "/

F| oOF1l ————ao(OF1, |Fe°

o(E 1 p42)

w(C)F1, FoO)l,

w(g+1n —n)
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£,

FCl, »CF1,
Xlg” 507\
Fo® Fo(C)1l, ———— o (C)F1, o F (4.98)
o (6" 1-p12)
Fw()1, 1) w(C)F1,

The top squares commute by Proposition 4.11. The bottom squares are  applied to the
definitions of £* and £, respectively. Note that w(0°?) = 0 (0°“) and w(0°®) = o (0?).
The left and right triangles in both squares commute on the nose since

0(©@7”) 00" =", 0”00 (0”) =70". (4.99)
Using Proposition 4.10, similar arguments as the above prove the last two equations in the
proposition. [

5. Naturality of the Casimir complex

In the previous section we have shown that the Casimir complex commutes with generating
I-morphisms £1,,, 71, in Com(U). In this section we show that this commutativity is natural
with respect to 2-morphisms.

5.1. Natural transformations k and K

Throughout this section we will find it convenient to view Kom(U) and Com(U) as
idempotented additive monoidal categories as explained in the introduction. Consider the
complex

C:= @mn. (5.1

nez

In this section we show that the functor

— QC: ComU) — Com(Uf), 5.2)
is naturally isomorphic to the functor

C® —:ComU) — ComUf) (5.3)
via an invertible natural transformation

kK:i=®C=CQ®— (5.4
with inverse

KC®—-—=-3C. (5.5

Recall that the tensor product of complexes and juxtaposition of diagrams gives the composition
operation in categories Com(U/) and Com(Uf). Here we will use composition notation rather than
the tensor notation.
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Defining the natural transformation « and its inverse ¥ amounts to specifying for any complex
X in Com(U) a chain map

kx: XC — CX, kx:CX — XC, (5.6)

such that for any chain map f: X — Y the squares

yc—>—cy cy —> s ye
fC cr cf fC 5.7
XCK—X>CX CX’/?—X>XC

commute (up to chain homotopy).
On generating 1-morphisms we define

KF1, = £ FCl, - CFl, &ry, =& :CFl, — FCl, (5.8)
Ke1, = ET:EC1, — CEN,  Rgy, i=ET:CEL, — ECL,. (5.9)

For an arbitrary complex X in Com({) the chain maps xx and ky are determined from the
assignments above. For example, if X = EFF1,{t} then

- - et
kx = EFFCL Y erer 0 MY cerr (0 S Y ceF L1
(5.10)
This definition of xy produces a commutative diagram
CXY1, o Xyci,
KXy XKy
XCr1, (5.11)

in Com(Z/l) for complexes Y = ln/Yln and X = ln”Xln’: with CXYI,, = ln//ClnHXln/YIn.

Proposition 5.1. Egs. (5.7) hold for all 2-morphisms in Com(U).

Proof. It is enough to check naturality squares (5.7) on generating 2-morphisms (dots, crossing,
cups, and caps) in . This will be done in Section 5.2. [

It is clear from the definitions in (5.8) and (5.9) of « and ¥ and the results in Section 4.2 that
Kxix = Idey, kxkyx = ldyc (5.12)

in Com(U{), so that x and ¥ are inverse.
Naturality of « and ¥ and the universality of the Karoubian envelope allow us to extend « and
i to isomorphisms between functors

— ®C: Kar(Com(U)) — Kar(Com(UL)) (5.13)
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and
C ® —: Kar(ComU)) — Kar(Com(U)). (5.14)
The equivalence Kar(Com(U)) = Com(U ) allows us to treat ¥ and ¥ as isomorphisms
K:—Q®C=C®— and :CR®—=—-QC

between endofunctors on Com(Uf) concluding the proof of Theorem 1.1.
5.2. Naturality with respect to 2-morphisms

It is immediate from the axioms of a 2-category and will be used throughout this section
that for any g € G the chain maps 08:C — g(C) induce natural transformations between
functors

°®—CR—=3g0)®—, —®0%:—®C=>—®gl). (5.15)

5.2.1. Naturality of k for dot 2-morphism
We will show that the diagram

Fe1, — e, Fe1, ——cri,
ic Cf = ic Ci (5.16)
FC1, — > CFl, Fe1, —— CF1,

commutes up to homotopy (commutes in Com(UA)). Let
(S‘)’=S‘o(fc)—(ci)o§‘. (5.17)

We construct a chain homotopy (§ )" >~ 0.

(AR -T¢l 11
’U’ EFF1, - EFF1.{-2}
< EFFL.(2} ) Tel 1 ( ) A Al < >

Fl,{1+n} EFF1n Flp{n—3}

A~

) N (€7 N ()

( FEF1.{2} FEF1n{~2} )

.Fln{l_n}) l?i lU (Zgn) _iTi l?l ( Fla{n—1}
T v In -In (5.18)
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where, after simplifying the map (£ ~)’, we have

Gy =>< - >< EE =0 (5.19)

€ = - €)% =0 (5.20)
DL N
€9 = J - f (5.21)
€ =0 (5.22)
il
€9 = - + % , - (5.23)

N f3 ho e

X
X
X

€Y, =

- ; (5.24)
h +/z+ f 3 o+fz h +J‘z+ f 3
=n—1 ~ =n—1

><><><

N
€l = - + L) - > L) (5.25)
f1+f2+f3 3 &t fith+h 3 &tp
=n—1 W [‘\ =n—1 f‘\
1=f 1=f
N1

EHh= Y O O (5.26)

S1+fa=n f1+f2*"

1</ N 1<h a+fr
EDN =l =0 (5.27)

and the chain homotopy is given by

(1) == (n°) 1, = >< l— > L4 (5.28)

7
fafrts [ A 8P

=n—1
(ho)zl = —(h0)22 == (5.29)
N
=X |-
! f1+f2-iif3 /‘E LRNE

I<fi
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h
()1, = >< l - Y L (5.30)
ffrps | M

=n—1
1<hi

(hl)zl = Z : O (hl)zz =0. (5.3

Si+fa=n L Rp)
1=fi
The naturality square for the map «gy, = ’§+ follows from the naturality square in
(5.16):
§+
ec, C&Ly,

Yw /9\67
o)

Ew ()1, ———— 0 (0)&1,

$c $c c$ ciF (5.32)

EC1, Ccel,

where the middle square is the image of (5.16) under the 2-functor w. The left and right
squares commute by the naturality of o® and 9%, and the top and bottom squares commutes
by Proposition 4.12.

5.2.2. Naturality of « for dot 2-morphism
We will show that the diagram

cFl, — 7" reu, CF1, —— Feu,
¢ i ic = ¢ i ic (5.33)
CFl, —— s FC1, CFL, —— 71,
KF1, -

commutes up to homotopy. To see this apply ow to the diagram (5.32), and use the naturality
of ¢?¢ and @?®, and Proposition 4.10 to see that each of the five small squares in (5.34)
commutes.



1492 A. Beliakova et al. / Advances in Mathematics 230 (2012) 1442-1501

-

CF1, FCl,
Qo'w]: ]:adw
cwEh)
ocw(C)F1, Fow(C)1,
Ci aw(C)i \{aw(C) iC (534)
ocw(C)F1, — Fow(C)1,
cwE")
Q(Ta)f W{,{)
CF1, Fcl,

The naturality square

s +
cel, —— e, cel, —— gci,
c? ifc - c? ti (5.35)
CEL, ———— &C, CEL, —— €1,
K. 1’1

can similarly be shown to commute by applying ow to the square (5.16) and appealing to
Proposition 4.10.

5.2.3. Naturality of k and K for crossing 2-morphisms

We will show that the diagram

KF Fin Feo & F
FFCl, —— > CFF1, FFrCcl, —— FCF1l, —— CFF1,
x c c x = x c c X(5.36)
FFCl, ———— CFF1, FFCl, ——— FCF1l, ——— CFF1,
KFF1, Fe~ EF

commutes for all n € Z by treating the cases n < 0 and n > 0 separately. For n < 0 consider
the map

Z:=(C X )o(t F)o(F&) = (EF)o(F&)o( X 0). (5.37)

One can check that the map Z is identically zero, so that the diagram (5.36) commutes on the
nose for n < 0 (i.e. commutes in Kom(UA)).
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For n > 0 we deduce commutativity from the commutativity of the diagram

Feo & F

FFC1, FFC1, CFF1,
\\]-"]:g" / \ o°F @*ffV i
FFo(C)1n T Fo(€) F1, — Fo(C)F1, 55 0(C) FF1,
x(z Txa(q o(C) }QT cx
FFo(C)1, —>.7:a )F1, =% Fo(C)F1, —>a( )VFF1,
%:}'g" \ / Fo°F _5"]-'&
FFC1, = FCF1, = CFF1, (5.38)
where the center rectangle
FFo@l,—2 Fo@Ftl, — L o) F P,
X o) o X (5.39)
FFo(O)1, T) Fo(C)F1, T o (O)FF1,
commutes on the nose since the map (of complexes)
= (0@ X )o — (& F)o )o (X o) (5.40)

is already zero in Kom(U) for n > 0. The triangles commute up to homotopy since ¢’ is the

homotopy inverse of 7 by Proposition 4.1. The left and right squares follow from the naturality

of 07, and the commutativity up to homotopy of the remaining squares is implied by (4.71).
For all n € Z the naturality square for k¢¢y, and the crossing is proven as follows

gEr £re
gec, £Cel, ceel,
T \(‘jcfg“’ 8@”7 ngg ysVA
£€w(0)1, X ew(0)EL, s cw(0)EL, L8 w(e)eeT,
e T w(©) w(©) T 54
EEW(C)1, *H‘:w n g Ew(C Hw(C)&‘:ln
%&w 5@»\ / £o4E EE
gect, _ £cel, _ CEel,
g+ £re (5.41)

where the center rectangle is the image of (5.36) under w. Each of the two triangles commutes up
to homotopy since ¢® is the homotopy inverse of 9“. The squares on the left and right commute
by the naturality of ¢® and 0®. The remaining squares commute by Eq. (4.97) in Proposition 4.12.
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The naturality of k¥ and the crossing is established by applying the symmetry 2-functor ¥ to
the above arguments.

5.2.4. Naturality of k for cap 2-morphisms
We show that the naturality square

ot c

c,, —— =2 v, Cly, C1,
c c = c c (5.42)
M MY N
EFCl, ————— CEF, EFCly, ECF1, —— CEF1,
KEF1y i it

commutes up to homotopy by considering the cases n > 0 and n < 0 separately.
For n < 0 the complex C1,, is indecomposable. In this case, let

z=(c )o@ P o)~ ( ~0) (5.43)
We will specify a homotopy Z =~ 0.

[ -Ty 4
™ EFL, - EF1a{-2}
(Te) () e ()

1,{1-n} EF1, 1,{n-1}
A

@) " 2)° " @)

< EFEF1{2} EFEFL{~2} )

c‘,'fln{ln}) Tl’{l Tl”‘u (ZZL) _TlTi Tl?l ( EFLn{n—1}
TITe LY Hn -l (5.44)

where, after simplifying, Z is given by terms

+ (5.45)
m [N @
(5.46)

(5.47)

(5.48)

\\n - n (5.49)
()
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n n
20, = < - A3 (5.50)
(XN (XN
(2)3, =0 (5.51)
n
(2)%, = /R\ - (5.52)
| p
(2)}, = / - / (5.53)
, A : [
n
D, 4 Ji (5.54)
(2)3,=0 (5.55)
n
(D)), = — ~ (5.56)
and the chain homotopy is given by
n
(h%), = — - Z 81 ng (5.57)
gl-igzjgs g% n
(5.58)
Z tie &% o0 (5.59)
g1t82+g3 f\\ n
(5.60)
_ Z o oo (5.61)
gl—tgz+g3 gzﬂ n
(5.62)
n
(h')y = — J\ - ) = ng (5.63)
‘ ><\ Ay gltgz+gs KBJ'\\ n
(h0)22 =0. (564)

It remains to prove the homotopy commutativity of (5.42) in the case n > 0. This follows from
the commutativity of the diagram
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C
Cly Clp
QU
=0
o(C) ¢
a(C)1y a(C)1p
C a(C) a(C) c
My y [ y

EFo(O)ly ————— E0(O)F Iy ——————— 0(O)EF 1y

&5 e F
EQ°F
EFo° °EF

EFCIy ECF1, — CEF1,
ge= EtF

(5.65)

The left and right squares commute (up to homotopy) by definition. The top square commutes up
to homotopy by Proposition 4.1. The bottom two squares commute by Proposition 4.11. Hence,
naturality follows from the commutativity of the diagram below:

s (01, 20 a (01,
mo(c) a(C) oY (5.66)
when n > 0.
To prove the homotopy commutativity of (5.66) let
7 =(0© ~ )olrF) o)~ (A o©). (5.67)

We will show that Z’ is homotopic to zero

v A
N Eln = FELn{-2}
() () L ma e ()

1,{1+n} FELy 1,{-n-1}
A

(2! S @ - (2
( EFFEL{2) ) ( cFFEL, > < EFFEL{~2} )
I A T C v i

TliT Tl 7 Tl@ B Tl\f\ (5.68)
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where the chain map Z’ is given by

nel n n
Zh;! = ﬁz - /24 (5.69)

(Zhy = (2] = (Zhy, =o. (5.70)
| |
/N0 n n
(ZH = /Z{ - 04 5.71)
"), = (5.72)
n n
(2)%, = (2", = - (5.73)
1 ' n ' n
(ZHy, = - (5.74)
(ZHl, = (2)3, = (2", = (5.75)

and the chain homotopy is given by

(ho)n = _(ho)n = (5.76)

(1) = (1), =0 77

n
(hl)n = (hl)zl = /zz (5.78)

(h'), = (1), =0. (5.79)

and
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Naturality of the other cap follows from the homotopy commutative diagram below:

c
Gy Cl,
Q\\ w(C) A\
w(C)1, w(C)1,
O @ ) w(C w(C)ﬂ/[ C\f\
/ FEo¥ J-"g“\\l /7:@‘*’5 oY FE \/

FECL, = FCEL, - CF&é1,
FEr e (5.80)
The center rectangle follows by applying the symmetry w to the homotopy commutative square
(5.42) and replacing n by —n. The two squares on the left and right commute by naturality of
0?,0%. The top square and the bottom middle triangle are commutative since ¢® is the homotopy
inverse of 0® as shown in Proposition 4.1. The bottom two squares follow from Egs. (4.94) and
(4.97) in Proposition 4.12.

5.2.5. Naturality of K for cap 2-morphisms
We show that the squares

c1, —sect, c1, —c1,
‘N N¢ ‘N N°© (5-81)
CEF1, —— EFC1, CFEl, — FECI,
KEF1, FElp

commute up to homotopy. To show that the first square is homotopy commutative consider the
diagram below:

C
C1, >C1,
/\ij //\
ow(C) G
ow(C)1 ow(C)1,
¢ ¢ ch AC
(C)¢F1 Té‘aw )F1, % Eow(C gﬁé’]—'aw(C)l
/ 0TEF \ /&;M? 5f§w\
CEFL, ECF1, — EFC1,
¢F £~ (5.82)

The center rectangle is obtained by applying ow to the homotopy commutative square (5.42).
The triangle commutes since 0?® has inverse 9°® by Proposition 4.1. The bottom two squares
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were shown to commute in Proposition 4.10. The remaining squares commute up to homotopy
by the naturality of 0?® and Proposition 4.1.

The second naturality square in (5.81) can be shown to commute by applying ocw to (5.80)
and arguing as above.

5.2.6. Naturality of « for cup 2-morphisms
We must show that the squares

Kre1,

FEC1l, ——— CFE1,

KeF1,

EFCl, ———— CEF1,

e c\J e c\J (5.83)
c1, ?—>C1n c1, ?—>C1n
1n 1n
commute up to homotopy. The proof is given by the following diagrams:
gFCl, N £CF1, &7 CEF1,
T \\ﬁgw sgw?/ ria VEF /‘"
EFU(C)1, 220 ey(0)F1, s g0 (0)F1, 2% y(o)e F1,
Ve e w<c>@T A%
Y(C)1, Y(C)1,
%(C)
Y N
C1, C1,
c (5.84)
Fecu, e Feel, £ CFEl,
’ \}'Eg“’ f@d’y‘ Fobe oV Fe /‘"
FEW(C)1, 22 Fy0)en, s Foe)et, Y5 y(o) Fe,
\J¢ 0 (C) UT ¢\
Y(C)1, Y(C)1,
%(C)
C1, C1,
c (5.85)

The center rectangles commute up to homotopy since they are obtained from the homotopy
commutative squares in (5.81) via the symmetry . The triangles and the left, bottom and
right squares in both diagrams above commute since oV is inverse g¥ by Proposition 4.1. The
remaining squares commute by Proposition 4.9.
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5.2.7. Naturality of € for cup 2-morphisms
The naturality for one cap is given by the commutative diagram in Com(U)

Egt EF

CEF1, ECF1, EFC1,
oV EF gV F £FoY
vEHF EYE)
V(C)EF1, EY(CO)F1, EFY (O,
Cw VI(C)U U ¥(©C) v C
Y (O)1, ¥(O)1,
o ¥(C)
C1, Cl,

(5.86)

where the middle square commutes up to homotopy by applying v to the homotopy commutative
diagram (5.42). The left and right squares commute by the naturality of 0¥ and 3¥. The bottom
square commutes on the nose since o¥ has inverse g¥. The bottom two squares commute by
Proposition 4.9.

Naturality for ¥ with respect to the other cap is proven similarly.
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