244 research outputs found
Double-resonant fast particle-wave interaction
In future fusion devices fast particles must be well confined in order to
transfer their energy to the background plasma. Magnetohydrodynamic
instabilities like Toroidal Alfv\'en Eigenmodes or core-localized modes such as
Beta Induced Alfv\'en Eigenmodes and Reversed Shear Alfv\'en Eigenmodes, both
driven by fast particles, can lead to significant losses. This is observed in
many ASDEX Upgrade discharges. The present study applies the drift-kinetic
HAGIS code with the aim of understanding the underlying resonance mechanisms,
especially in the presence of multiple modes with different frequencies. Of
particular interest is the resonant interaction of particles simultaneously
with two different modes, referred to as 'double-resonance'. Various mode
overlapping scenarios with different q profiles are considered. It is found
that, depending on the radial mode distance, double-resonance is able to
enhance growth rates as well as mode amplitudes significantly. Surprisingly, no
radial mode overlap is necessary for this effect. Quite the contrary is found:
small radial mode distances can lead to strong nonlinear mode stabilization of
a linearly dominant mode.Comment: 12 pages, 11 figures; Nuclear Fusion 52 (2012
Nonlinear interplay of Alfven instabilities and energetic particles in tokamaks
The confinement of energetic particles (EP) is crucial for an efficient
heating of tokamak plasmas. Plasma instabilities such as Alfven Eigenmodes (AE)
can redistribute the EP population making the plasma heating less effective,
and leading to additional loads on the walls. The nonlinear dynamics of
toroidicity induced AE (TAE) is investigated by means of the global gyrokinetic
particle-in-cell code ORB5, within the NEMORB project. The nonperturbative
nonlinear interplay of TAEs and EP due to the wave-particle nonlinearity is
studied. In particular, we focus on the nonlinear modification of the
frequency, growth rate and radial structure of the TAE, depending on the
evolution of the EP distribution in phase space. For the ITPA benchmark case,
we find that the frequency increases when the growth rate decreases, and the
mode shrinks radially. This nonlinear evolution is found to be correctly
reproduced by means of a quasilinear model, namely a model where the linear
effects of the nonlinearly modified EP distribution function are retained.Comment: Submitted to Plasma Phys. Control. Fusio
Cooperative Scattering by Cold Atoms
We have studied the interplay between disorder and cooperative scattering for
single scattering limit in the presence of a driving laser. Analytical results
have been derived and we have observed cooperative scattering effects in a
variety of experiments, ranging from thermal atoms in an optical dipole trap,
atoms released from a dark MOT and atoms in a BEC, consistent with our
theoretical predictions.Comment: submitted for special issue of PQE 201
Experimental investigation of the radial structure of energetic particle driven modes
Alfv\'en eigenmodes (AEs) and energetic particle modes (EPMs) are often
excited by energetic particles (EPs) in tokamak plasmas. One of the main open
questions concerning EP driven instabilities is the non-linear evolution of the
mode structure. The aim of the present paper is to investigate the properties
of beta-induced AEs (BAEs) and EP driven geodesic acoustic modes (EGAMs)
observed in the ramp-up phase of off-axis NBI heated ASDEX Upgrade (AUG)
discharges. This paper focuses on the changes in the mode structure of
BAEs/EGAMs during the non-linear chirping phase. Our investigation has shown
that in case of the observed down-chirping BAEs the changes in the radial
structure are smaller than the uncertainty of our measurement. This behaviour
is most probably the consequence of that BAEs are normal modes, thus their
radial structure strongly depends on the background plasma parameters rather
than on the EP distribution. In the case of rapidly upward chirping EGAMs the
analysis consistently shows shrinkage of the mode structure. The proposed
explanation is that the resonance in the velocity space moves towards more
passing particles which have narrower orbit widths.Comment: submitted to Nuclear Fusio
Modification of radiation pressure due to cooperative scattering of light
Cooperative spontaneous emission of a single photon from a cloud of N atoms
modifies substantially the radiation pressure exerted by a far-detuned laser
beam exciting the atoms. On one hand, the force induced by photon absorption
depends on the collective decay rate of the excited atomic state. On the other
hand, directional spontaneous emission counteracts the recoil induced by the
absorption. We derive an analytical expression for the radiation pressure in
steady-state. For a smooth extended atomic distribution we show that the
radiation pressure depends on the atom number via cooperative scattering and
that, for certain atom numbers, it can be suppressed or enhanced.Comment: 8 pages, 2 Figure
- …