244 research outputs found

    Double-resonant fast particle-wave interaction

    Get PDF
    In future fusion devices fast particles must be well confined in order to transfer their energy to the background plasma. Magnetohydrodynamic instabilities like Toroidal Alfv\'en Eigenmodes or core-localized modes such as Beta Induced Alfv\'en Eigenmodes and Reversed Shear Alfv\'en Eigenmodes, both driven by fast particles, can lead to significant losses. This is observed in many ASDEX Upgrade discharges. The present study applies the drift-kinetic HAGIS code with the aim of understanding the underlying resonance mechanisms, especially in the presence of multiple modes with different frequencies. Of particular interest is the resonant interaction of particles simultaneously with two different modes, referred to as 'double-resonance'. Various mode overlapping scenarios with different q profiles are considered. It is found that, depending on the radial mode distance, double-resonance is able to enhance growth rates as well as mode amplitudes significantly. Surprisingly, no radial mode overlap is necessary for this effect. Quite the contrary is found: small radial mode distances can lead to strong nonlinear mode stabilization of a linearly dominant mode.Comment: 12 pages, 11 figures; Nuclear Fusion 52 (2012

    Nonlinear interplay of Alfven instabilities and energetic particles in tokamaks

    Full text link
    The confinement of energetic particles (EP) is crucial for an efficient heating of tokamak plasmas. Plasma instabilities such as Alfven Eigenmodes (AE) can redistribute the EP population making the plasma heating less effective, and leading to additional loads on the walls. The nonlinear dynamics of toroidicity induced AE (TAE) is investigated by means of the global gyrokinetic particle-in-cell code ORB5, within the NEMORB project. The nonperturbative nonlinear interplay of TAEs and EP due to the wave-particle nonlinearity is studied. In particular, we focus on the nonlinear modification of the frequency, growth rate and radial structure of the TAE, depending on the evolution of the EP distribution in phase space. For the ITPA benchmark case, we find that the frequency increases when the growth rate decreases, and the mode shrinks radially. This nonlinear evolution is found to be correctly reproduced by means of a quasilinear model, namely a model where the linear effects of the nonlinearly modified EP distribution function are retained.Comment: Submitted to Plasma Phys. Control. Fusio

    Cooperative Scattering by Cold Atoms

    Full text link
    We have studied the interplay between disorder and cooperative scattering for single scattering limit in the presence of a driving laser. Analytical results have been derived and we have observed cooperative scattering effects in a variety of experiments, ranging from thermal atoms in an optical dipole trap, atoms released from a dark MOT and atoms in a BEC, consistent with our theoretical predictions.Comment: submitted for special issue of PQE 201

    Experimental investigation of the radial structure of energetic particle driven modes

    Full text link
    Alfv\'en eigenmodes (AEs) and energetic particle modes (EPMs) are often excited by energetic particles (EPs) in tokamak plasmas. One of the main open questions concerning EP driven instabilities is the non-linear evolution of the mode structure. The aim of the present paper is to investigate the properties of beta-induced AEs (BAEs) and EP driven geodesic acoustic modes (EGAMs) observed in the ramp-up phase of off-axis NBI heated ASDEX Upgrade (AUG) discharges. This paper focuses on the changes in the mode structure of BAEs/EGAMs during the non-linear chirping phase. Our investigation has shown that in case of the observed down-chirping BAEs the changes in the radial structure are smaller than the uncertainty of our measurement. This behaviour is most probably the consequence of that BAEs are normal modes, thus their radial structure strongly depends on the background plasma parameters rather than on the EP distribution. In the case of rapidly upward chirping EGAMs the analysis consistently shows shrinkage of the mode structure. The proposed explanation is that the resonance in the velocity space moves towards more passing particles which have narrower orbit widths.Comment: submitted to Nuclear Fusio

    Modification of radiation pressure due to cooperative scattering of light

    Full text link
    Cooperative spontaneous emission of a single photon from a cloud of N atoms modifies substantially the radiation pressure exerted by a far-detuned laser beam exciting the atoms. On one hand, the force induced by photon absorption depends on the collective decay rate of the excited atomic state. On the other hand, directional spontaneous emission counteracts the recoil induced by the absorption. We derive an analytical expression for the radiation pressure in steady-state. For a smooth extended atomic distribution we show that the radiation pressure depends on the atom number via cooperative scattering and that, for certain atom numbers, it can be suppressed or enhanced.Comment: 8 pages, 2 Figure
    corecore