16,550 research outputs found

    Structural evaluation of concrete expanded polystyrene sandwich panels for slab applications

    Get PDF
    Sandwich panels are being extensively and increasingly used in building construction because they are light in weight, energy efficient, aesthetically attractive and can be easily handled and erected. This paper presents a structural evaluation of Concrete-Expanded Polystyrene (CEPS) sandwich panels for slab applications using finite element modeling approach. CEPS panels are made of expanded polystyrene foam sandwiched between concrete skins. The use of foam in the middle of sandwich panel reduces the weight of the structure and also acts as insulation against thermal, acoustics and vibration. Applying reinforced concrete skin to both sides of panel takes the advantages of the sandwich concept where the reinforced concrete skins take compressive and tensile loads resulting in higher stiffness and strength and the core transfers shear loads between the faces. This research uses structural software Strand7, which is based on finite element method, to predict the load deformation behaviour of the CEPS sandwich slab panels. Non linear static analysis was used in the numerical investigations. Predicted results were compared with the existing experimental results to validate the numerical approach used

    Hamiltonians for a general dilaton gravity theory on a spacetime with a non-orthogonal, timelike or spacelike outer boundary

    Get PDF
    A generalization of two recently proposed general relativity Hamiltonians, to the case of a general (d+1)-dimensional dilaton gravity theory in a manifold with a timelike or spacelike outer boundary, is presented.Comment: 17 pages, 3 figures. Typos correcte

    On the Canonical Reduction of Spherically Symmetric Gravity

    Get PDF
    In a thorough paper Kuchar has examined the canonical reduction of the most general action functional describing the geometrodynamics of the maximally extended Schwarzschild geometry. This reduction yields the true degrees of freedom for (vacuum) spherically symmetric general relativity. The essential technical ingredient in Kuchar's analysis is a canonical transformation to a certain chart on the gravitational phase space which features the Schwarzschild mass parameter MSM_{S}, expressed in terms of what are essentially Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we discuss the geometric interpretation of Kuchar's canonical transformation in terms of the theory of quasilocal energy-momentum in general relativity given by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent boost to the rest frame," where the ``rest frame'' is defined by vanishing quasilocal momentum. Furthermore, our formalism is general enough to cover the case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing Kucha\v{r}'s original work for Schwarzschild black holes from the framework of hyperbolic geometry, we present new results concerning the canonical reduction of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure

    Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production

    Get PDF
    Our main goals are to get a deeper insight into the evolution and final fates of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to investigate their C, N, and O yields. Using the Monash University Stellar Evolution code we computed and analysed the evolution of stars of metallicity Z = 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our model stars experience a strong C, N, and O envelope enrichment either due to the second dredge-up, the dredge-out phenomenon, or the third dredge-up early during the TP-(S)AGB phase. Their late evolution is therefore similar to that of higher metallicity objects. When using a standard prescription for the mass loss rates during the TP-(S)AGB phase, the computed stars lose most of their envelopes before their cores reach the Chandrasekhar mass, so our standard models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we find that the reduction of only one order of magnitude in the mass-loss rates, which are particularly uncertain at this metallicity, would prevent the complete ejection of the envelope, allowing the stars to either explode as an SNI1/2 or become an electron-capture SN. Our calculations stop due to an instability near the base of the convective envelope that hampers further convergence and leaves remnant envelope masses between 0.25 M_sun for our 4 M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N, and O yields derived from our full calculations and computed under two different assumptions, namely, that the instability causes a practically instant loss of the remnant envelope or that the stars recover and proceed with further thermal pulses. Our results have implications for the early chemical evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&

    Helical Tubes in Crowded Environments

    Get PDF
    When placed in a crowded environment, a semi-flexible tube is forced to fold so as to make a more compact shape. One compact shape that often arises in nature is the tight helix, especially when the tube thickness is of comparable size to the tube length. In this paper we use an excluded volume effect to model the effects of crowding. This gives us a measure of compactness for configurations of the tube, which we use to look at structures of the semi-flexible tube that minimize the excluded volume. We focus most of our attention on the helix and which helical geometries are most compact. We found that helices of specific pitch to radius ratio 2.512 to be optimally compact. This is the same geometry that minimizes the global curvature of the curve defining the tube. We further investigate the effects of adding a bending energy or multiple tubes to begin to explore the more complete space of possible geometries a tube could form.Comment: 10 page

    On completeness of orbits of Killing vector fields

    Get PDF
    A Theorem is proved which reduces the problem of completeness of orbits of Killing vector fields in maximal globally hyperbolic, say vacuum, space--times to some properties of the orbits near the Cauchy surface. In particular it is shown that all Killing orbits are complete in maximal developements of asymptotically flat Cauchy data, or of Cauchy data prescribed on a compact manifold. This result gives a significant strengthening of the uniqueness theorems for black holes.Comment: 16 pages, Latex, preprint NSF-ITP-93-4
    • …
    corecore