14,894 research outputs found
Ti and V layers retard interaction between Al films and polycrystalline Si
Fine-grained polycrystalline Si (poly Si) in contact with Al films recrystallizes at temperatures well below the Si-Al eutectic (577 °C). We show that this interaction can be deferred or suppressed by placing a buffer layer of Ti or V between the Al film and the poly Si. During annealing, Ti or V form TiAl3 or Val3 at the buffer-layer–Al-film interface, but do not react with the poly Si so that the integrity of the poly Si is preserved as long as some unreacted Ti or V remains. The reaction between the Ti or V layer and the Al film is transport limited ([proportional]t^1/2) and characterized by the diffusion constants 1.5×10^15 exp(–1.8eV/kT) Å^2/sec or 8.4×10^12 exp(–1.7eV/kT) Å^2/sec, respectively
Structural evaluation of concrete expanded polystyrene sandwich panels for slab applications
Sandwich panels are being extensively and increasingly used in building construction because they are light in weight, energy efficient, aesthetically attractive and can be easily handled and erected. This paper presents a structural evaluation of Concrete-Expanded Polystyrene (CEPS) sandwich panels for slab applications using finite element modeling approach. CEPS panels are made of expanded polystyrene foam sandwiched between concrete skins. The use of foam in the middle of sandwich panel reduces the weight of the structure and also acts as insulation against thermal, acoustics and vibration. Applying reinforced concrete skin to both sides of panel takes the advantages of the sandwich concept where the reinforced concrete skins take compressive and tensile loads resulting in higher stiffness and strength and the core transfers shear loads between the faces. This research uses structural software Strand7, which is based on finite element method, to predict the load deformation behaviour of the CEPS sandwich slab panels. Non linear static analysis was used in the numerical investigations. Predicted results were compared with the existing experimental results to validate the numerical approach used
Saharan Air and Atlantic Tropical Cyclone Suppression From a Global Modeling Perspective
During summer 2006, the NASA African Monsoon Multidisciplinary Analysis (NAMMA) organized a field campaign in Africa called Special Observation Period (SOP-3), in which scientists in the field were involved in a number of surface network and aircraft measurements. One of the scientific goals of the campaign was to understand the nature and causes for tropical cyclogenesis originating out of African Easterly Waves (AEWs, westward propagating atmospheric disturbances sometimes associated with precursors of hurricanes), and the role that the Saharan Air Layer (SAL, a hot and dry air layer advecting large amounts of dust) can play in the formation or suppression of tropical cyclones. During the NAMMA campaign a high-resolution global model, the NASA GEOS-5, was operationally run by the NASA Global Modeling and Assimilation Office (GMAO) in support to the mission. The daily GEOS-5 forecasts were found to be very useful by decision-making scientists in the field as an aid to discriminate between developing and non-developing AEWs and plan the flight tracks. In the post-event analyses which were performed mostly by the Goddard Laboratory for Atmospheres, two events were highlighted: a non-developing AEW which appeared to have been suppressed by Saharan air, compared to a developing AEW which was the precursor of hurricane Helene. Both events were successfully predicted by the GEOS-5 during the real-time forecasts provided in support to the mission. In this work it is found that very steep moisture gradients and a strong thermal dipole, with relatively warm air in the mid-troposphere and cool air below, are associated with SAL in both the GEOS-5 forecasts and the NCEP analyses, even at -great distance- from the Sahara. The presence of these unusual thermodynamic features over the Atlantic Ocean, at several thousands of kilometers from the African coastline, is suggestive that SAL mixing is very minimal and that the model's capability of retaining the different properties of air masses during transport are important to represent effectively the role of dry air intrusions in the tropical circulation
Spreading of Latex Particles on a Substrate
We have investigated both experimentally and theoretically the spreading
behavior of latex particles deposited on solid substrates. These particles,
which are composed of cross-linked polymer chains, have an intrinsic elastic
modulus. We show that the elasticity must be considered to account for the
observed contact angle between the particle and the solid substrate, as
measured through atomic force microscopy techniques. In particular, the work of
adhesion computed within our model can be significantly larger than that from
the classical Dupr\'{e} formula.Comment: 7 pages, 7 figures, to appear in Europhys. Let
Lightcone reference for total gravitational energy
We give an explicit expression for gravitational energy, written solely in
terms of physical spacetime geometry, which in suitable limits agrees with the
total Arnowitt-Deser-Misner and Trautman-Bondi-Sachs energies for
asymptotically flat spacetimes and with the Abbot-Deser energy for
asymptotically anti-de Sitter spacetimes. Our expression is a boundary value of
the standard gravitational Hamiltonian. Moreover, although it stands alone as
such, we derive the expression by picking the zero-point of energy via a
``lightcone reference.''Comment: latex, 7 pages, no figures. Uses an amstex symbo
The generation of compartmentalized nanoparticles containing siRNA and cisplatin using a multi-needle electrohydrodynamic strategy
This study outlines a novel manufacturing technique for the generation of compartmentalized trilayered nanoparticles loaded with an anti-cancer agent and siRNA as a platform for the combination treatment of cancers. More specifically, we describe the use of a multi-needle electrohydrodynamic approach to produce nanoparticles with high size specificity and scalable output, while allowing suitable environments for each therapeutic agent. The inner polylactic-glycolic-acid (PLGA) layer was loaded with cisplatin while the middle chitosan layer was loaded with siRNA. The corresponding polymeric solutions were characterized for their viscosity, surface tension and conductivity, while particle size was determined using dynamic light scattering. The internal structure was studied using transmission electron microscopy (TEM) and Structured Illumination Microscopy (SIM). The inclusion of cisplatin was studied using electron dispersive spectroscopy (EDS). We were able to generate nanoparticles of approximate size 130 nm with three distinct layers containing an outer protective PLGA layer, a middle layer of siRNA and an inner layer of cisplatin. These particles have the potential not only for uptake into tumors via the enhanced permeability and retention (EPR) effect but also the sequential release of the siRNA and chemotherapeutic agent, thereby providing a means of overcoming challenges of targeting and tumor drug resistance
The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations
We address the problem of evaluating the power spectrum of the velocity field
of the ICM using only information on the plasma density fluctuations, which can
be measured today by Chandra and XMM-Newton observatories. We argue that for
relaxed clusters there is a linear relation between the rms density and
velocity fluctuations across a range of scales, from the largest ones, where
motions are dominated by buoyancy, down to small, turbulent scales:
, where
is the spectral amplitude of the density perturbations at wave number ,
is the mean square component of the velocity field,
is the sound speed, and is a dimensionless constant of order unity.
Using cosmological simulations of relaxed galaxy clusters, we calibrate this
relation and find . We argue that this value is set at
large scales by buoyancy physics, while at small scales the density and
velocity power spectra are proportional because the former are a passive scalar
advected by the latter. This opens an interesting possibility to use gas
density power spectra as a proxy for the velocity power spectra in relaxed
clusters, across a wide range of scales.Comment: 6 pages, 3 figures, submitted to ApJ Letter
Does environmental knowledge moderate the relationship between household determinants' intention to practice solid waste segregation-at-source? a conceptual paper
Previous research has reported that environmental knowledge plays an important role in enhancing general pro-environmental behaviour, as environmental knowledge appears to be the key indicator for increasing awareness of several pollution promulgations and other natural environmental issues. However, the significant role of environmental knowledge in the intention of households to practise solid waste segregation-at-source is not well understood. This research will, therefore, investigate the influence of environmental knowledge on the intention of households to engage in solid waste segregation-at-source. Further analysis will also be carried out explore the moderating effect of environmental knowledge in the relationship between the households’ attitude and subjective norm (i.e. descriptive norm and injunctive norm) with the intention to practise solid waste segregation-at-source. The findings of this current research are expected to provide an essential opportunity to investigate knowledge gaps, to contribute to the enrichment of existing literature, as well as to provide important insights for local households and Malaysian government agencies to strengthen the sense of responsibility for environmental cleanliness
Influences of Local Sea-Surface Temperatures and Large-scale Dynamics on Monthly Precipitation Inferred from Two 10-year GCM-Simulations
Two parallel sets of 10-year long: January 1, 1982 to December 31, 1991, simulations were made with the finite volume General Circulation Model (fvGCM) in which the model integrations were forced with prescribed sea-surface temperature fields (SSTs) available as two separate SST-datasets. One dataset contained naturally varying monthly SSTs for the chosen period, and the oth& had the 12-monthly mean SSTs for the same period. Plots of evaporation, precipitation, and atmosphere-column moisture convergence, binned by l C SST intervals show that except for the tropics, the precipitation is more strongly constrained by large-scale dynamics as opposed to local SST. Binning data by SST naturally provided an ensemble average of data contributed from disparate locations with same SST; such averages could be expected to mitigate all location related influences. However, the plots revealed: i) evaporation, vertical velocity, and precipitation are very robust and remarkably similar for each of the two simulations and even for the data from 1987-ENSO-year simulation; ii) while the evaporation increased monotonically with SST up to about 27 C, the precipitation did not; iii) precipitation correlated much better with the column vertical velocity as opposed to SST suggesting that the influence of dynamical circulation including non-local SSTs is stronger than local-SSTs. The precipitation fields were doubly binned with respect to SST and boundary-layer mass and/or moisture convergence. The analysis discerned the rate of change of precipitation with local SST as a sum of partial derivative of precipitation with local SST plus partial derivative of precipitation with boundary layer moisture convergence multiplied by the rate of change of boundary-layer moisture convergence with SST (see Eqn. 3 of Section 4.5). This analysis is mathematically rigorous as well as provides a quantitative measure of the influence of local SST on the local precipitation. The results were recast to examine the dependence of local rainfall on local SSTs; it was discernible only in the tropics. Our methodology can be used for computing relationship between any forcing function and its effect(s) on a chosen field
- …